LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
zgrqts.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zgrqts (M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT)
 ZGRQTS More...
 

Function/Subroutine Documentation

subroutine zgrqts ( integer  M,
integer  P,
integer  N,
complex*16, dimension( lda, * )  A,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  Q,
complex*16, dimension( lda, * )  R,
integer  LDA,
complex*16, dimension( * )  TAUA,
complex*16, dimension( ldb, * )  B,
complex*16, dimension( ldb, * )  BF,
complex*16, dimension( ldb, * )  Z,
complex*16, dimension( ldb, * )  T,
complex*16, dimension( ldb, * )  BWK,
integer  LDB,
complex*16, dimension( * )  TAUB,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( 4 )  RESULT 
)

ZGRQTS

Purpose:
 ZGRQTS tests ZGGRQF, which computes the GRQ factorization of an
 M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The M-by-N matrix A.
[out]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the GRQ factorization of A and B, as returned
          by ZGGRQF, see CGGRQF for further details.
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,N)
          The N-by-N unitary matrix Q.
[out]R
          R is COMPLEX*16 array, dimension (LDA,MAX(M,N))
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, R and Q.
          LDA >= max(M,N).
[out]TAUA
          TAUA is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors, as returned
          by DGGQRC.
[in]B
          B is COMPLEX*16 array, dimension (LDB,N)
          On entry, the P-by-N matrix A.
[out]BF
          BF is COMPLEX*16 array, dimension (LDB,N)
          Details of the GQR factorization of A and B, as returned
          by ZGGRQF, see CGGRQF for further details.
[out]Z
          Z is DOUBLE PRECISION array, dimension (LDB,P)
          The P-by-P unitary matrix Z.
[out]T
          T is COMPLEX*16 array, dimension (LDB,max(P,N))
[out]BWK
          BWK is COMPLEX*16 array, dimension (LDB,N)
[in]LDB
          LDB is INTEGER
          The leading dimension of the arrays B, BF, Z and T.
          LDB >= max(P,N).
[out]TAUB
          TAUB is COMPLEX*16 array, dimension (min(P,N))
          The scalar factors of the elementary reflectors, as returned
          by DGGRQF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK, LWORK >= max(M,P,N)**2.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (4)
          The test ratios:
            RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP)
            RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP)
            RESULT(3) = norm( I - Q'*Q ) / ( N*ULP )
            RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 176 of file zgrqts.f.

Here is the call graph for this function:

Here is the caller graph for this function: