LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
cckgqr.f
Go to the documentation of this file.
1 *> \brief \b CCKGQR
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CCKGQR( NM, MVAL, NP, PVAL, NN, NVAL, NMATS, ISEED,
12 * THRESH, NMAX, A, AF, AQ, AR, TAUA, B, BF, BZ,
13 * BT, BWK, TAUB, WORK, RWORK, NIN, NOUT, INFO )
14 *
15 * .. Scalar Arguments ..
16 * INTEGER INFO, NIN, NM, NMATS, NMAX, NN, NOUT, NP
17 * REAL THRESH
18 * ..
19 * .. Array Arguments ..
20 * INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ), PVAL( * )
21 * REAL RWORK( * )
22 * COMPLEX A( * ), AF( * ), AQ( * ), AR( * ), B( * ),
23 * $ BF( * ), BT( * ), BWK( * ), BZ( * ), TAUA( * ),
24 * $ TAUB( * ), WORK( * )
25 * ..
26 *
27 *
28 *> \par Purpose:
29 * =============
30 *>
31 *> \verbatim
32 *>
33 *> CCKGQR tests
34 *> CGGQRF: GQR factorization for N-by-M matrix A and N-by-P matrix B,
35 *> CGGRQF: GRQ factorization for M-by-N matrix A and P-by-N matrix B.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] NM
42 *> \verbatim
43 *> NM is INTEGER
44 *> The number of values of M contained in the vector MVAL.
45 *> \endverbatim
46 *>
47 *> \param[in] MVAL
48 *> \verbatim
49 *> MVAL is INTEGER array, dimension (NM)
50 *> The values of the matrix row(column) dimension M.
51 *> \endverbatim
52 *>
53 *> \param[in] NP
54 *> \verbatim
55 *> NP is INTEGER
56 *> The number of values of P contained in the vector PVAL.
57 *> \endverbatim
58 *>
59 *> \param[in] PVAL
60 *> \verbatim
61 *> PVAL is INTEGER array, dimension (NP)
62 *> The values of the matrix row(column) dimension P.
63 *> \endverbatim
64 *>
65 *> \param[in] NN
66 *> \verbatim
67 *> NN is INTEGER
68 *> The number of values of N contained in the vector NVAL.
69 *> \endverbatim
70 *>
71 *> \param[in] NVAL
72 *> \verbatim
73 *> NVAL is INTEGER array, dimension (NN)
74 *> The values of the matrix column(row) dimension N.
75 *> \endverbatim
76 *>
77 *> \param[in] NMATS
78 *> \verbatim
79 *> NMATS is INTEGER
80 *> The number of matrix types to be tested for each combination
81 *> of matrix dimensions. If NMATS >= NTYPES (the maximum
82 *> number of matrix types), then all the different types are
83 *> generated for testing. If NMATS < NTYPES, another input line
84 *> is read to get the numbers of the matrix types to be used.
85 *> \endverbatim
86 *>
87 *> \param[in,out] ISEED
88 *> \verbatim
89 *> ISEED is INTEGER array, dimension (4)
90 *> On entry, the seed of the random number generator. The array
91 *> elements should be between 0 and 4095, otherwise they will be
92 *> reduced mod 4096, and ISEED(4) must be odd.
93 *> On exit, the next seed in the random number sequence after
94 *> all the test matrices have been generated.
95 *> \endverbatim
96 *>
97 *> \param[in] THRESH
98 *> \verbatim
99 *> THRESH is REAL
100 *> The threshold value for the test ratios. A result is
101 *> included in the output file if RESULT >= THRESH. To have
102 *> every test ratio printed, use THRESH = 0.
103 *> \endverbatim
104 *>
105 *> \param[in] NMAX
106 *> \verbatim
107 *> NMAX is INTEGER
108 *> The maximum value permitted for M or N, used in dimensioning
109 *> the work arrays.
110 *> \endverbatim
111 *>
112 *> \param[out] A
113 *> \verbatim
114 *> A is COMPLEX array, dimension (NMAX*NMAX)
115 *> \endverbatim
116 *>
117 *> \param[out] AF
118 *> \verbatim
119 *> AF is COMPLEX array, dimension (NMAX*NMAX)
120 *> \endverbatim
121 *>
122 *> \param[out] AQ
123 *> \verbatim
124 *> AQ is COMPLEX array, dimension (NMAX*NMAX)
125 *> \endverbatim
126 *>
127 *> \param[out] AR
128 *> \verbatim
129 *> AR is COMPLEX array, dimension (NMAX*NMAX)
130 *> \endverbatim
131 *>
132 *> \param[out] TAUA
133 *> \verbatim
134 *> TAUA is COMPLEX array, dimension (NMAX)
135 *> \endverbatim
136 *>
137 *> \param[out] B
138 *> \verbatim
139 *> B is COMPLEX array, dimension (NMAX*NMAX)
140 *> \endverbatim
141 *>
142 *> \param[out] BF
143 *> \verbatim
144 *> BF is COMPLEX array, dimension (NMAX*NMAX)
145 *> \endverbatim
146 *>
147 *> \param[out] BZ
148 *> \verbatim
149 *> BZ is COMPLEX array, dimension (NMAX*NMAX)
150 *> \endverbatim
151 *>
152 *> \param[out] BT
153 *> \verbatim
154 *> BT is COMPLEX array, dimension (NMAX*NMAX)
155 *> \endverbatim
156 *>
157 *> \param[out] BWK
158 *> \verbatim
159 *> BWK is COMPLEX array, dimension (NMAX*NMAX)
160 *> \endverbatim
161 *>
162 *> \param[out] TAUB
163 *> \verbatim
164 *> TAUB is COMPLEX array, dimension (NMAX)
165 *> \endverbatim
166 *>
167 *> \param[out] WORK
168 *> \verbatim
169 *> WORK is COMPLEX array, dimension (NMAX*NMAX)
170 *> \endverbatim
171 *>
172 *> \param[out] RWORK
173 *> \verbatim
174 *> RWORK is REAL array, dimension (NMAX)
175 *> \endverbatim
176 *>
177 *> \param[in] NIN
178 *> \verbatim
179 *> NIN is INTEGER
180 *> The unit number for input.
181 *> \endverbatim
182 *>
183 *> \param[in] NOUT
184 *> \verbatim
185 *> NOUT is INTEGER
186 *> The unit number for output.
187 *> \endverbatim
188 *>
189 *> \param[out] INFO
190 *> \verbatim
191 *> INFO is INTEGER
192 *> = 0 : successful exit
193 *> > 0 : If CLATMS returns an error code, the absolute value
194 *> of it is returned.
195 *> \endverbatim
196 *
197 * Authors:
198 * ========
199 *
200 *> \author Univ. of Tennessee
201 *> \author Univ. of California Berkeley
202 *> \author Univ. of Colorado Denver
203 *> \author NAG Ltd.
204 *
205 *> \date November 2011
206 *
207 *> \ingroup complex_eig
208 *
209 * =====================================================================
210  SUBROUTINE cckgqr( NM, MVAL, NP, PVAL, NN, NVAL, NMATS, ISEED,
211  $ thresh, nmax, a, af, aq, ar, taua, b, bf, bz,
212  $ bt, bwk, taub, work, rwork, nin, nout, info )
213 *
214 * -- LAPACK test routine (version 3.4.0) --
215 * -- LAPACK is a software package provided by Univ. of Tennessee, --
216 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
217 * November 2011
218 *
219 * .. Scalar Arguments ..
220  INTEGER info, nin, nm, nmats, nmax, nn, nout, np
221  REAL thresh
222 * ..
223 * .. Array Arguments ..
224  INTEGER iseed( 4 ), mval( * ), nval( * ), pval( * )
225  REAL rwork( * )
226  COMPLEX a( * ), af( * ), aq( * ), ar( * ), b( * ),
227  $ bf( * ), bt( * ), bwk( * ), bz( * ), taua( * ),
228  $ taub( * ), work( * )
229 * ..
230 *
231 * =====================================================================
232 *
233 * .. Parameters ..
234  INTEGER ntests
235  parameter( ntests = 7 )
236  INTEGER ntypes
237  parameter( ntypes = 8 )
238 * ..
239 * .. Local Scalars ..
240  LOGICAL firstt
241  CHARACTER dista, distb, type
242  CHARACTER*3 path
243  INTEGER i, iinfo, im, imat, in, ip, kla, klb, kua, kub,
244  $ lda, ldb, lwork, m, modea, modeb, n, nfail,
245  $ nrun, nt, p
246  REAL anorm, bnorm, cndnma, cndnmb
247 * ..
248 * .. Local Arrays ..
249  LOGICAL dotype( ntypes )
250  REAL result( ntests )
251 * ..
252 * .. External Subroutines ..
253  EXTERNAL alahdg, alareq, alasum, cgqrts, cgrqts, clatms,
254  $ slatb9
255 * ..
256 * .. Intrinsic Functions ..
257  INTRINSIC abs
258 * ..
259 * .. Executable Statements ..
260 *
261 * Initialize constants.
262 *
263  path( 1: 3 ) = 'GQR'
264  info = 0
265  nrun = 0
266  nfail = 0
267  firstt = .true.
268  CALL alareq( path, nmats, dotype, ntypes, nin, nout )
269  lda = nmax
270  ldb = nmax
271  lwork = nmax*nmax
272 *
273 * Do for each value of M in MVAL.
274 *
275  DO 60 im = 1, nm
276  m = mval( im )
277 *
278 * Do for each value of P in PVAL.
279 *
280  DO 50 ip = 1, np
281  p = pval( ip )
282 *
283 * Do for each value of N in NVAL.
284 *
285  DO 40 in = 1, nn
286  n = nval( in )
287 *
288  DO 30 imat = 1, ntypes
289 *
290 * Do the tests only if DOTYPE( IMAT ) is true.
291 *
292  IF( .NOT.dotype( imat ) )
293  $ go to 30
294 *
295 * Test CGGRQF
296 *
297 * Set up parameters with SLATB9 and generate test
298 * matrices A and B with CLATMS.
299 *
300  CALL slatb9( 'GRQ', imat, m, p, n, type, kla, kua,
301  $ klb, kub, anorm, bnorm, modea, modeb,
302  $ cndnma, cndnmb, dista, distb )
303 *
304  CALL clatms( m, n, dista, iseed, type, rwork, modea,
305  $ cndnma, anorm, kla, kua, 'No packing', a,
306  $ lda, work, iinfo )
307  IF( iinfo.NE.0 ) THEN
308  WRITE( nout, fmt = 9999 )iinfo
309  info = abs( iinfo )
310  go to 30
311  END IF
312 *
313  CALL clatms( p, n, distb, iseed, type, rwork, modeb,
314  $ cndnmb, bnorm, klb, kub, 'No packing', b,
315  $ ldb, work, iinfo )
316  IF( iinfo.NE.0 ) THEN
317  WRITE( nout, fmt = 9999 )iinfo
318  info = abs( iinfo )
319  go to 30
320  END IF
321 *
322  nt = 4
323 *
324  CALL cgrqts( m, p, n, a, af, aq, ar, lda, taua, b, bf,
325  $ bz, bt, bwk, ldb, taub, work, lwork,
326  $ rwork, result )
327 *
328 * Print information about the tests that did not
329 * pass the threshold.
330 *
331  DO 10 i = 1, nt
332  IF( result( i ).GE.thresh ) THEN
333  IF( nfail.EQ.0 .AND. firstt ) THEN
334  firstt = .false.
335  CALL alahdg( nout, 'GRQ' )
336  END IF
337  WRITE( nout, fmt = 9998 )m, p, n, imat, i,
338  $ result( i )
339  nfail = nfail + 1
340  END IF
341  10 CONTINUE
342  nrun = nrun + nt
343 *
344 * Test CGGQRF
345 *
346 * Set up parameters with SLATB9 and generate test
347 * matrices A and B with CLATMS.
348 *
349  CALL slatb9( 'GQR', imat, m, p, n, type, kla, kua,
350  $ klb, kub, anorm, bnorm, modea, modeb,
351  $ cndnma, cndnmb, dista, distb )
352 *
353  CALL clatms( n, m, dista, iseed, type, rwork, modea,
354  $ cndnma, anorm, kla, kua, 'No packing', a,
355  $ lda, work, iinfo )
356  IF( iinfo.NE.0 ) THEN
357  WRITE( nout, fmt = 9999 )iinfo
358  info = abs( iinfo )
359  go to 30
360  END IF
361 *
362  CALL clatms( n, p, distb, iseed, type, rwork, modea,
363  $ cndnma, bnorm, klb, kub, 'No packing', b,
364  $ ldb, work, iinfo )
365  IF( iinfo.NE.0 ) THEN
366  WRITE( nout, fmt = 9999 )iinfo
367  info = abs( iinfo )
368  go to 30
369  END IF
370 *
371  nt = 4
372 *
373  CALL cgqrts( n, m, p, a, af, aq, ar, lda, taua, b, bf,
374  $ bz, bt, bwk, ldb, taub, work, lwork,
375  $ rwork, result )
376 *
377 * Print information about the tests that did not
378 * pass the threshold.
379 *
380  DO 20 i = 1, nt
381  IF( result( i ).GE.thresh ) THEN
382  IF( nfail.EQ.0 .AND. firstt ) THEN
383  firstt = .false.
384  CALL alahdg( nout, path )
385  END IF
386  WRITE( nout, fmt = 9997 )n, m, p, imat, i,
387  $ result( i )
388  nfail = nfail + 1
389  END IF
390  20 CONTINUE
391  nrun = nrun + nt
392 *
393  30 CONTINUE
394  40 CONTINUE
395  50 CONTINUE
396  60 CONTINUE
397 *
398 * Print a summary of the results.
399 *
400  CALL alasum( path, nout, nfail, nrun, 0 )
401 *
402  9999 FORMAT( ' CLATMS in CCKGQR: INFO = ', i5 )
403  9998 FORMAT( ' M=', i4, ' P=', i4, ', N=', i4, ', type ', i2,
404  $ ', test ', i2, ', ratio=', g13.6 )
405  9997 FORMAT( ' N=', i4, ' M=', i4, ', P=', i4, ', type ', i2,
406  $ ', test ', i2, ', ratio=', g13.6 )
407  RETURN
408 *
409 * End of CCKGQR
410 *
411  END
subroutine cckgqr(NM, MVAL, NP, PVAL, NN, NVAL, NMATS, ISEED, THRESH, NMAX, A, AF, AQ, AR, TAUA, B, BF, BZ, BT, BWK, TAUB, WORK, RWORK, NIN, NOUT, INFO)
CCKGQR
Definition: cckgqr.f:210
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine alahdg(IOUNIT, PATH)
ALAHDG
Definition: alahdg.f:63
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real b(3) integer i
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:74
subroutine cgrqts(M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT)
CGRQTS
Definition: cgrqts.f:176
subroutine slatb9(PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, DISTA, DISTB)
SLATB9
Definition: slatb9.f:169
subroutine alareq(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)
ALAREQ
Definition: alareq.f:91
subroutine cgqrts(N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT)
CGQRTS
Definition: cgqrts.f:176