109 SUBROUTINE stpt01( UPLO, DIAG, N, AP, AINVP, RCOND, WORK, RESID )
122 REAL ainvp( * ), ap( * ), work( * )
129 parameter( zero = 0.0e+0, one = 1.0e+0 )
134 REAL ainvnm, anorm, eps
160 anorm =
slantp(
'1', uplo, diag, n, ap, work )
161 ainvnm =
slantp(
'1', uplo, diag, n, ainvp, work )
162 IF( anorm.LE.zero .OR. ainvnm.LE.zero )
THEN
167 rcond = ( one / anorm ) / ainvnm
171 unitd =
lsame( diag,
'U' )
172 IF(
lsame( uplo,
'U' ) )
THEN
176 $ ainvp( jc+
j-1 ) = one
180 CALL
stpmv(
'Upper',
'No transpose', diag,
j, ap,
185 ainvp( jc+
j-1 ) = ainvp( jc+
j-1 ) - one
196 CALL
stpmv(
'Lower',
'No transpose', diag, n-
j+1, ap( jc ),
201 ainvp( jc ) = ainvp( jc ) - one
208 resid =
slantp(
'1', uplo,
'Non-unit', n, ainvp, work )
210 resid = ( ( resid*rcond ) /
REAL( N ) ) / eps
subroutine stpt01(UPLO, DIAG, N, AP, AINVP, RCOND, WORK, RESID)
STPT01
logical function lsame(CA, CB)
LSAME
real function slantp(NORM, UPLO, DIAG, N, AP, WORK)
SLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
subroutine stpmv(UPLO, TRANS, DIAG, N, AP, X, INCX)
STPMV
real function slamch(CMACH)
SLAMCH
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j