
FEFFIT

Using feff to model XAFS data

Contents

1 Introduction : 1

2 Input and Output Files : 3

3 Keywords and Controls for feffit.inp : 5

4 Variables and Parameters in Fitting : 11

5 Goodness of Fit and Uncertainties in the Variables : 16

6 The XAFS Equation and feffit Algorithms : 21

A Examples : 26

B Suggestions for Building Physical Models with feffit : 31

C Program Notes : 37

D Simultaneous Fits of Multiple Data Sets : 38

feffit was written with the guidance and encouragement of Edward A. Stern. This program would

not be possible without feff, written by John Rehr and Steve Zabinsky, who let me use some of

their code and many of their ideas. I also thank Charles Bouldin, Anatoly Frenkel, P�eteris L��vi�n�s,

Maoxu Qian, Bruce Ravel, Hans Stragier, Fuming Wang, Yizhak Yacoby, and Yanjun Zhang for

many useful discussions and helpful suggestions.

Matthew Newville

University of Chicago

GSE-CARS, Bldg 434A

APS, Argonne National Lab

Argonne, IL 60439

newville@cars.uchicago.edu

(630) 252-0431

feffit version 2.32

updated: July 3, 1998

Chapter 1 1

Introduction

feffit will �t the calculations from feff to XAFS �(k) data, giving a method of determining

the local structure around an atom. As with all XAFS analysis programs, feffit can determine

interatomic distances, coordination numbers and atomic species of neighboring atoms. Finer details

of atomic con�gurations, including detailed descriptions of two-body distribution functions and

certain aspects of three-body correlations, are also measurable with feffit. Experience has shown

that the feff calculations are good enough to be used e�ectively to �t real XAFS data from a

wide range of experimental systems. It should be kept in mind, however, that feffit compares

experimental XAFS to theoretical calculations. This requires some considerations that can be

neglected when comparing experimental data to experimental standards.

feffit uses the feffnnnn.dat �les output from feff as the basis calculations with which to

�t the XAFS data. In this way, feffit is highly dependent on feff, so that a good understanding

of the feff calculation is important in being able to use feffit well. Each of the feffnnnn.dat

�les represents the �(k) for a scattering path, created by feff (version 5 or higher) when the

\Control Card" MFEFF is set to 1. There is no distinction between single- or multiple-scattering

paths in feff or feffit. Those unfamiliar with feff or the path expansion should refer to the

feff documentation and standard XAFS references.

The XAFS contribution of each scattering path (read from each feffnnnn.dat �le) is adjusted

by applying standard XAFS parameters such as coordination number, change in distance, Debye-

Waller Factor, and shift in energy origin) until the best-�t to the data is found. Standard numerical

techniques are used to �nd the set of variables that minimizes the sum of squares of the di�erence

between model and data � and to estimate the uncertainties in the variables. Fitting can be done

in either R-space or back-transformed k-space, with Fourier Transforms done by feffit on both

the XAFS data and the calculated model during the �tting process. Real and imaginary parts of

the Fourier Transformed � are used in the �t with equal weight. The model �(k) used to compare

to data is evaluated as a sum over paths

�

model

(k) =

X

Paths

�

path

(k;Amp(k);Phase(k);Path Parameters):

�

path

is the the XAFS contribution for each path, and depends on the scattering amplitude and

phase-shift from feff (from feffnnnn.dat) and on standard XAFS Path Parameters. These Path

Parameters are the physical quantities used to alter the �

path

, such as re�nements of the XAFS

due to changes in the atomic distribution. feffit allows the XAFS for each path to be adjusted

by the following Path Parameters:

e0 shift of energy origin : k !

q

k

2

� e0(2m

e

=�h

2

)

ei imaginary energy shift (to give additional broadening)

S02 constant amplitude factor

delR change in distance (1st cumulant)

sigma2 mean-square-displacement (2nd cumulant), or Debye-Waller Factor

third 3rd cumulant (from anharmonicity in the atomic distribution)

fourth 4th cumulant (from anharmonicity in the atomic distribution)

Up to 100 scattering paths may be combined to �t the data. Since each path gets its own

set of Path Parameters, there could be up to 700 potential variables in the �t. But XAFS data

feffit Introduction 2

contains much less information than this about the local atomic structure around the central atom

(typically 10 to 20 variables can be determined in a �t) so constraints will need to be placed on

some of the Path Parameters. There is no general way to decide what should be varied or what the

best constraints are for a given system. With feffit, the user chooses the variables in the �t, and

writes mathematical expressions for the Path Parameters in terms of these user-chosen variables.

This conceptual distinction between variables and XAFS Path Parameters gives a powerful ability

to put constraints on system studied and to use more physically meaningful variables in the �t.

1.1 How to use this document

feffit is a fairly complex XAFS �tting program with lots of bells and whistles, and a few

concepts that may be new even to experienced XAFS analysts. This document is intended both

as a reference manual for the experienced user and as a tutorial for those who are knowledgeable

about XAFS but are new to feffit. A new user should probably skim all the chapters, and then go

through the worked examples in appendix A. It's a fairly simple XAFS problem, but it will get you

started. After the examples have been examined, a more careful reading of chapter 4 and appendix

B should give you ideas about how to apply feffit to your own XAFS problems, and chapter 5

should help you interpret the �t results. The remaining chapters are mostly written for reference.

Chapter 2 discusses data �le formats. Chapter 3 gives the complete list of feffit options and how

to implement them. Chapter 6 gives the feffit version of the XAFS equation and an overview of

the mathematical algorithms of the program.

1.2 Considerations When Using Theoretical Standards

feffit compares experimental XAFS data to a theoretical standard, which has become the

preferred analysis method in the XAFS community. While theoretical standards are convenient

and often more reliable than experimental standards, they do require some special considerations.

These are discussed in greater detail in the XAFS literature, but will be outlined here.

The experimental �(k) should be as free as possible from any systematic errors (such as detector

saturation or glitches). The appropriate corrections (especially for data taken in
uorescence) to

the data should be made before trusting the results from feffit. Such systematic errors and

corrections are more important when using theoretical standards rather than experimental ones,

because they will tend to cancel out (at least to �rst order) when using experimental standards.

The uwxafs3.0 program atoms (written by Bruce Ravel) will calculate most of these corrections,

as well make a good �rst draft of a feff.inp �le for crystalline materials. The corrections given

by atoms will be in the form of additional amplitude corrections which can be used in feffit to

give the feff calculation the same amplitude reduction as is expected for the data. See appendix

B and the atoms documentation for more details.

The second consideration is that the feff calculations are not perfect, and make assumptions in

the calculations (most notably the mu�n-tin approximation of the atomic potentials) that might be

inadequate for some systems. While feff and feffit has been demonstrated to give good results on

many \standard" compounds, it is still a good idea to measure a suitable experimental \standard"

compound and to �t it with a feff calculation before trusting the results for a completely unknown

structure. Such �ts to experimental \standards" generally prove invaluable in pointing out the the

best ways to modify the feff calculations, and therefore how to get the best information out of

the system being studied.

Chapter 2 3

Input and Output Files

2.1 Input Files

feffit uses the input �le feffit.inp to control the running of the program. If this �le

cannot be found, feffit will stop and complain. The form and contents of feffit.inp will be

further discussed in chapter 3. In addition, feffit needs a set of feffnnnn.dat �les (such as

feff0001.dat) to use as the model paths for building the model �(k). Finally, a �le containing

the �(k) data to be �t may be speci�ed. (If no data �le is given, feffit will simply combine the

feffnnnn.dat according to the inputs, without any �tting, which makes a convenient and
exible

alternative to ff2chi, the �nal module of feff). Note that the data contains �(k), not �(E),

not �(k) that is k-weighted, and not ~�(R). The data is expected to be given on an evenly spaced

k-grid of 0.05

�

A, and will be interpolated onto this grid if it is not. The names of the feffnnnn.dat

and input data �les can be any �le name (including subdirectory paths) allowed by the operating

system up to 70 characters long. In summary, there are three inputs:

1. feffit.inp , the input �le for the program.

2. A set of feffnnnn.dat �les to sum to make the total �(k).

3. A data �le containing �(k) for the data to be �t.

2.2 Running feffit, Output Messages, Warnings, and Errors

You should be able to run feffit by using the command feffit from any directory with a �le

named feffit.inp. As feffit runs, messages will be sent to the screen telling what the program

is doing, and may include warning or error messages. If feffit does something you didn't expect

or doesn't run to completion, these output messages will provide the best diagnostic clues about

what happened. feffit should never break without giving messages that will tell the user how to

�x the problem. But if it does, please send me the input �le and output messages along with your

bitter complaints.

2.3 Output Files

As soon as the �t is done, feffit will write feffit.log , giving a summary of the inputs (such

as Fourier Transform parameters) and the �t results for the variables, Path Parameters, and so on.

This �le is the only place where the �tting information such as uncertainties in the �t variables

will be given. Output data �les for the input data, full �nal �t, and the �t contribution from each

path will be written in k-space, R-space, and backtransformed k-space. The names and contents

of the output data �les will depend on the �le format used as discussed in the next section. The

documentation in the output data �les for the individual paths will include the Path Parameters

used for that path. Again, the outputs are:

1. Run time messages written to standard output.

2. feffit.log , giving all important numerical results.

3. �(k), ~�(R), and ~�(k) for the data.

4. �(k), ~�(R), and ~�(k) for the full model �t.

5. �(k), ~�(R), and ~�(k) for the �t contribution from each path.

feffit Input and Output Files 4

2.4 Data File Formats

As for all uwxafs3.0 data analysis programs, there are two options for the format of the data

�les. The data may be in either a specially formatted binary �le known as a UWXAFS �le (also

called an RDF �le), or in a specially formatted ASCII column �le. More information on these �le

formats, including the format speci�cations and a discussion of the relative merits of the two �le

formats can be found in the uwxafs3.0 document files.doc . The two �le handling formats can

be mixed in feffit, so that the input data can be in the UWXAFS format and the output data

can be in the ASCII format, or vice versa.

If the input data is in UWXAFS format, it must be in a �le with �le type `CHI' (such as is

output from autobk). Both the �le name and record key (either nkey or skey) must be speci�ed

for the input. Outputs �les in the UWXAFS format will be written to �les the data, full �t, and

contribution from each path in sequential records. If the user speci�es the output �le name by

out = Test, the output �les will be Test.chi (with �le type 'CHI') for all �(k), Test.rsp (with

�le type 'RSP') for all ~�(R), and Test.env (with �le type 'ENV') for all ~�(k).

If the input data is in ASCII format, it must be in a �le with one or more document lines,

followed by a required line of minus signs (`-'), followed by an ignored line (for column labels) , and

then columns of numerical data for k, and �(k). Note that each k value must be given, that the

second column is not k-weighted �(k) or separated magnitude and phase of �(k), and that only

one data pair can be given per line. Data past the second column will be ignored. The data will

be linearly interpolated onto an even k-grid of 0:05

�

A

�1

before being used.

Output �les in the ASCII format will each contain only one set of data, and will be named

according to the requested �le name, the contents of data, and the space in which the data is

written. If the user speci�es the output �le name by out = Test, the output �les will be Testk.dat ,

Testr.dat , and Testq.dat for the data �(k), ~�(R), and ~�(k), Testk.fit and Testr.fit for the

full �t �(k), ~�(R), and ~�(k), and Testk.nnn and Testr.nnn for the �(k), ~�(R), and ~�(k)from

path nnn . Files for the complex data of ~�(R) and ~�(k) will have �ve columns. The �rst column

will contain the abscissa (either R or k), followed by columns of real, imaginary, amplitude, and

phase of the complex data.

Chapter 3 5

Keywords and Controls for FEFFIT.INP

3.1 General Format of FEFFIT.INP

Input commands to feffit will be read from the �le feffit.inp . These inputs will name the

data �les and the feffnnnn.dat �les to use for each path, describe what to vary in the �t, and how

the variables will alter these XAFS contribution from each path. feffit uses keywords to describe

and assign values to all program parameters. The use of keywords allows the input �le to be

easily read and the values of the program parameters to be easily modi�ed. The keywords usually

have fairly transparent meanings. Most program parameters are assigned values with keyword

\sentences" which have syntax:

keyword hdelimiteri value.

The keyword must be one of the valid keywords listed below. The hdelimiteri is an equal sign or

white space (a blank or TAB) surrounded by any number of white spaces. The value is provided

by the user and will be interpreted as a number, a logical
ag, or a character string, depending on

the nature of the keyword | the list below will indicate what kind of value each keyword takes.

Logical
ags all have values true or false (t and f will work, too). If a keyword's value is a

number or logical
ag (but not a character string), the assigning keyword sentence can be put on

the same line as other numerical and logical keyword sentences. Keywords that take character

strings as their value must occur on their own line.

feffit does not distinguish keywords, variable names or character strings containing Math

Expressions by case. To accommodate many operating systems, it does distinguish the names of

external �les by case. Keyword sentences are allowed to occur in any order in the �le. Internal

comments can be written anywhere in feffit.inp , including end-of-line comments. Inputs to

feffit can be read from �les other than feffit.inp by using a keyword sentence of the form

\include myfile.inp" inside feffit.inp . This allows commonly used assignments (such as for

Path Parameters) to be kept in myfile.inp and to be used for many di�erent �ts.

A feffit.inp �le has quite a bit of structure to it, and the listing of Path Parameters makes

it look a bit like a spreadsheet or programming language. Because of this built-in structure, a tool

can be developed to help write the feffit.inp �les. One such tool exists in the form of special

macros (called feffit.el, written by Bruce Ravel, and part of the uwxafs3.0 distribution) for the

Emacs text editor. It's quite useful, and if you use Emacs, I highly recommend trying it. I hesitate

to say that you should learn Emacs just to use these macros, but it's a very good editor anyway.

There is some syntax checking in feffit, and if it gets confused by any inputs, it will report

this as a run-time message, telling which line of the input �le caused the confusion, and trying

to describe which words it did not understand. There is also some syntax checking of the math

expressions used and the variables de�ned. The syntax checking isn't foolproof, but it does catch

the most simple mistakes.

3.2 Summary of Keywords

Here is a brief list of all the keywords for all the program controls and parameters in feffit

with a brief description of the meaning of their values. The form of the values taken by these

keywords are indicated by c, n, or l for character strings, numbers, and logical
ags, respectively.

Where appropriate, valid options for the values are given in parentheses and default values are

given in brackets. The following sections give more detailed explanations for each keyword.

feffit Keywords and Controls for FEFFIT.INP 6

General/Miscellaneous:

%/! - End-of-Line Comment: ignore everything on the line after % or !

- Comment Line: ignore line if # is in 1st column

End - End-of-File: ignore rest of input �le, start �tting

Include c name of �le to read more input commands from [none]

Data Input and Output:

Title c Title line to write to output �les [none]

Formin c File Format of input data �le (uw/ascii) [found from input data]

Formout c File Format of output data �le (uw/ascii) [same as input format]

Format c File Format of both input and output data �le (uw/ascii) [none]

Data c Name of input data �le (containing �(k)) [none]

Out c Name of output data �le [same as input]

Allout l Flag for writing outputs for all individual paths (T/F) [T]

Kspout l Flag for writing �(k) output �les (T/F) [T]

Rspout l Flag for writing ~�(R) output �les (T/F) [T]

Qspout l Flag for writing ~�(k) output �les (T/F) [T]

Rlast l Maximum R-value for ~�(R) output �le [10.0]

Fitting Control Flags:

Rspfit l Flag for �tting in R-space (T/F)[T]

Qspfit l Flag for �tting in backtransformed k-space (T/F)[F]

Nodegen l Flag for not using the Path Degeneracies from feff. (T/F)[F]

Noout l Flag for not writing any output data �les (T/F)[F]

Nofit l Flag for not �tting, use initial guesses as �nal values (T/F)[F]

Norun l Flag for not �tting and not writing output �les (T/F)[F]

Fourier Transform Parameters and Fitting Ranges:

Rmin n R

min

for R-space �t and R! k FT [0.0]

Rmax n R

max

for R-space �t and R! k FT [0.0]

Kmin n k

min

for k-space �t and k! R FT [�rst data point]

Kmax n k

max

for k-space �t and k ! R FT [last data point]

Kweight n k-weight for k ! R FT [1.0]

Dk1 n Low-k Window Parameter for k ! R FT [0.0]

Dk2 n High-k Window Parameter for k ! R FT [0.0]

Dk n Both Dk1 and Dk2 [0.0]

Dr1 n Low-R Window Parameter for R! k FT [0.0]

Dr2 n High-R Window Parameter for R! k FT [0.0]

Dr n Both Dr1 and Dr2 [0.0]

Ikwindo n Integer to select Window Function for k ! R FT [0, Hanning]

Irwindo n Integer to select Window Function for R! k FT [0, Hanning]

Iwindo n Both Ikwindo and Irwindo [0, Hanning]

Mftwrt n Number of array points in FFT for writing out data [2048]

Mftfit n Number of array points in FFT for �t [512 or 1024]

Error Analysis:

Epsdat n Measurement uncertainty in �(k) [found from high-R]

Epsr n Measurement uncertainty in ~�(R) [found from high-R]

Cormin n Smallest correlation to report in feffit.log . [0.50]

feffit Keywords and Controls for FEFFIT.INP 7

Variables and User De�ned Functions:

Each variable and User De�ned Function must be on its own line

Guess n Initial guess for a variable [0.0]

Set c Math Expression For a User De�ned Function [none]

Path Parameters:

Each Path Parameter must be on its own line with syntax

Path Parameter hdelimiteri Path Index hdelimiteri Character String

where Path Index indicates which path each parameter is assigned to

Path c Name of feffnnnn.dat �le for this path [none]

Id c User Identi�cation Label for this path [none]

S02 c Constant amplitude factor [1.0]

E0 c E

0

shift [0.0]

Ei c Imaginary energy shift (broadening) [0.0]

Delr c �R, or 1st cumulant [0.0]

Sigma2 c mean-square displacement of path distance, �

2

[0.0]

Third c Third Cumulant [0.0]

Fourth c Fourth Cumulant [0.0]

3.3 General and Miscellaneous Keywords

% or ! indicates a comment anywhere in feffit.inp , including end-of-line comments.

* or # indicates a comment line in feffit.inp if it is the �rst character on the line.

End stop reading inputs, and ignore everything in feffit.inp after this line.

Include read more inputs from another �le. The syntax is include myfile.inp, and

can be used in feffit.inp for standard de�nitions, or to break up long input

�les. If you're �tting lots of similar data sets, you may �nd this useful.

3.4 Data Input and Output Keywords

Title user-chosen title line which will be written to the output �les. 10 title lines can

be used, each of up to 70 characters. Everything on a line after the keyword

title will be included in the title, even if it contains other keywords.

Formin �le format to use for the input data �les. The choices are UWXAFS and ASCII.

See chapter 2 and the uwxafs3.0 document on data �les for more details. The

default is for feffit to �nd the input format itself, from the input data. This

does not need to be on its own line.

Formout �le format to use for the output data �les. The choices are the same as for

Formin, and the default is to use the format used as the input format. This

does not need to be on its own line.

Format sets both Formin and Formout.

feffit Keywords and Controls for FEFFIT.INP 8

Data input data �le name. For UWXAFS format �les, either the nkey or skey must

also be given, so that the syntax must be something like:

Data = cu.chi, 1 or Chi = cu.chi , TROUT.

For ASCII input data format, only the input �le name is needed. This should

be on its own line.

Out pre�x for the output �le name. See chapter 2 for more details, and an explanation

of the �le name su�xes. This does not need to be on its own line.

Allout logical
ag for writing output data for the individual paths to all output data

�les. The default is True.

Kspout logical
ag for writing output data �(k), the XAFS in un�ltered k-space. The

default is True.

Rspout logical
ag for writing output data ~�(R), the XAFS in R-space. The default is

True.

Qspout logical
ag for writing output data ~�(k), the XAFS in backtransformed or �ltered

k-space. The default is True.

Rlast last R value for which output data ~�(R) will be written. The default is 10:0

�

A.

Output k-space data will be written over the input data k-range.

3.5 Fitting Control Flags

Rspfit logical
ag for �tting in R-space. The default is True.

Qspfit logical
ag for �tting in backtransformed k-space. The default is False.

Nodegen logical
ag for ignoring the path degeneracies in all the feffnnnn.dat �les, e�ec-

tively setting all degeneracies to 1. The default is False, so that the degeneracies

in the feffnnnn.dat �les are used.

Nofit logical
ag for skipping the �t, so that the initial guesses of variables are used

as �nal values. The log �le and data outputs are written. This is useful for your

own error checking, and e�ectively changes all guesses to set. The default is

False, so that �tting is done.

Noout logical
ag for not writing any data �le outputs. The default is False, so that

outputs are written.

Norun logical
ag for both skip �tting and not writing any data �le outputs. This has

the same e�ect as setting both Nofit and Noout.

3.6 Fourier Transform Parameters and Fitting Ranges

Rmin low-R value of the R-space range for either R-space �t or for R ! k Fourier

Transform. The default is 0.

Rmax high-R value of the R-space range for either R-space �t or for R ! k Fourier

Transform. The default is 0.

Kmin low-k value of the k-space range for both k-space �t (for �ts to un�ltered or

�ltered data) and for k ! R Fourier Transform. The default is the �rst k-value

of the data.

feffit Keywords and Controls for FEFFIT.INP 9

Kmax high-k value of the k-space range for both k-space �t (for �ts to un�ltered or

�ltered data) and for k ! R Fourier Transform. The default is the last k-value

of the data.

Kweight k-weighting for the k! R Fourier Transform. The default is 1.

Dk1 low-k Fourier Transform Window Parameter (window \sill") for the k ! R

Fourier Transform. The default is 0.0.

Dk2 high-k Fourier Transform Window Parameter (window \sill") for the k ! R

Fourier Transform. The default is 0.0.

Dk sets both Dk1 and Dk2 to the same value. The default is 0.0.

Dr1 low-R Fourier Transform Window Parameter (window \sill") for the R ! k

Fourier Transform. The default is 0.0.

Dr2 high-R Fourier Transform Window Parameter (window \sill") for the R ! k

Fourier Transform. The default is 0.0.

Dr sets both Dr1 and Dr2 to the same value. The default is 0.0.

Ikwindo integer index to specify which of the possible Window Types to use for the

k ! R Fourier Transform. The default is 0, indicating Hanning Windows. See

chapter 6 for details, and a complete list of possible Window Types.

Irwindo integer index to specify which of the possible Window Types to use for the

R ! k Fourier Transform. The default is 0, indicating Hanning Windows. See

chapter 6 for details, and a complete list of possible Window Types.

Iwindo sets both Ikwindo and Irwindo. The default is 0.

Mftfit number of points to use in the FFT when doing the FFT for the actual �t. This

a�ects the R-spacing between data points �R = 10�=MFTFIT. The default is

the smallest power of 2 such that there are not less than N

idp

points in the �t

R-range. MFTFIT will be reset to a power of 2. This will a�ect the speed of the

calculation, but shouldn't substantially change the �t results.

Mftwrt the number of points to use in the Fourier Transform when doing the �nal FFT

for writing the output �les. This a�ects the R-spacing between data points,

given by �R = 10�=MFTWRT. The default is 2048, and the number will be set

to a power of 2.

3.7 Error Analysis Keywords

Epsdat �

k

, the uncertainty in the measurement of �(k), used to scale �

2

in the �t and

estimate of the variables. By default, it is found from the rms value of ~�(R)

between 15 and 25

�

A, as described in chapter 5.

Epsr �

R

, the uncertainty in the measurement of ~�(R), used to scale �

2

in the �t and

estimate of the variables. By default, it is found from the rms value of ~�(R)

between 15 and 25

�

A, as described in chapter 5.

Cormin smallest absolute value of correlation between any two variables to report in

feffit.log . The default is 0.50.

feffit Keywords and Controls for FEFFIT.INP 10

3.8 Variable and User De�ned Function Keywords

All variables and User De�ned Functions must be on their own line in feffit.inp . More informa-

tion on Math Expressions, variables and User De�ned Functions is in chapter 4.

Guess Initial guess for a variable. This statement de�nes the variable, and so is required

for every variable. The syntax is:

Guess hdelimiteri Variable Name hdelimiteri Number

where the Number will be used as the initial guess.

Set Math Expression to be used as a User De�ned Function. The syntax is:

Set hdelimiteri Function hdelimiteri Expression

3.9 Path Parameter Keywords

All Path Parameters must be on their own line in feffit.inp , with the syntax

Path Parameter hdelimiteri Path Index hdelimiteri Character String

where Path Index is an integer. For a mathematical description of the e�ect of each of these

parameters on �(k), see chapter 6.

Path Path File Name, the name of the feffnnnn.dat �le to use for the path. This

is required for a path to be used. There is no default.

Id User Label for the path, used only for ease of identi�cation. This is optional,

but very convenient. The default Label will include the Path Name, Half Path

Length, and Degeneracy.

S02 Math Expression for a constant multiplicative factor for �(k).

E0 Math Expression for the E

0

shift of the path.

Ei Math Expression for the imaginary energy shift of the path, which will mostly

broaden �(k). The mean-free-path, � � 1=

p

E

i

.

Delr Math Expression for a correction to R

e�

, the half the path length. Note that

this mostly a�ects the Phase, but that the Amplitude is also a�ected.

Sigma2 Math Expression for the mean-square displacement, or second cumulant (or

Debye-Waller Factor).

Third Math Expression for the third cumulant.

Fourth Math Expression for the fourth cumulant.

Chapter 4 11

Variables and Parameters in Fitting

In order to allow general and
exible constraints of the physically interesting quantities in the

�t, feffit uses three separate kinds of numerical values in its calculations. This formalism exists

to make the physical structure of the system under study easier to model. I hope that this rather

arcane formalism is useful enough to make learning it worthwhile. Appendix A and appendix

B have a few examples and suggestions for how to use this aspect of feffit to put physically

meaningful constraints on the �t of XAFS data.

First, we have the Path Parameters. These are numbers that have a pre-de�ned name and

e�ect on the XAFS function for a path. The Path Parameters represent the physical quantities in

the XAFS equation usually associated with XAFS measurements of local structure, such as �R

and �

2

. Chapter 6 has feffit's version of the XAFS equation, giving the numerical e�ect of each

of the Path Parameters. Each path used in the sum over multiple-scattering paths gets a set of its

own Path Parameters, so that each path can have a di�erent value of �R, etc.

Second, there are the variables. These are the quantities that are actually varied to get the

best �t. They are chosen and named by the user, and how they alter any of the Path Parameters

is also chosen by the user. The Path Parameters are not varied directly in feffit, but are instead

written in terms of the variables. This allows two convenient things to happen. First, a single

variable can be used in di�erent Path Parameters, making constraints of di�erent Path Parameters

easy. Second, it makes it easy to change what is varied and what is held constant in the �t.

To make the separation of Path Parameters and variables even easier, there is a third kind

of numerical values which I'll call User De�ned Functions (less formally, you can think of the

variables as \guessed" quantities and these user de�ned functions as \set" quantities). These are

intermediate quantities that are neither true variables nor Path Parameters. Like variables, they

are chosen and named by the user, and can represent something similar to or very di�erent from

the usual XAFS Path Parameters. In general, they are written in terms of the variables, and other

User De�ned Functions, and they can be as simple or complex as you choose to make them. User

De�ned Functions are very convenient for both constraining Path Parameters and changing what

is varied in the �t.

4.1 Path Parameters and Path Indices

There are nine Path Parameters associated with each path: The Path File Name, a User Label,

and seven Numerical Path Parameters. All statements for the Path Parameters in feffit.inp take

two arguments, with syntax:

Path Parameter hdelimiteri Path Index hdelimiteri Character String.

where the Path Index is an integer between 1 and 999, and ties the di�erent Path Parameters

together. The Path Indices may be ordered according to any convention, and need not be related

to the feff path index The feff Path Indices are a convenient choice for many simple applications,

but cannot always be used (if, for example, there are more than two central atom sites in the system

being studied). The Path Index is the index that feffit uses in the sum over paths to make the

total �(k), and the index used to order and write the output data for the individual paths.

The Path Parameter is one of the following:

Path name of feffnnnn.dat �le to use as theoretical calculation for this path

Id optional user-supplied path identi�cation

e0 shift of energy origin : k !

q

k

2

� e0� 2m

e

=�h

2

feffit Variables and Parameters in Fitting 12

ei imaginary energy shift (to give additional broadening)

S02 constant amplitude factor

delR change in half path length (1st cumulant, added to R

e�

)

sigma2 mean-square-displacement (2nd cumulant), or Debye-Waller Factor

third Third cumulant

fourth Fourth cumulant

The character string for a path �le name is the �le name for the feffnnnn.dat for that Path

Index. The �le name can be up to 70 characters long. Subdirectory paths can be included in the �le

name, and for case-sensitive systems, case conventions must be followed when naming �les. If one

of these �les cannot be found, feffit will tell you which �les are missing before it stops. The User

path identi�cation label is available for the user's convenience | it will be written to the outputs,

but has no internal function. The character strings for the rest of the Path Parameters (all those

except Path and Id) are interpreted as Math Expressions used to evaluate the Path Parameter,

and are written in terms of the variables, user de�ned functions, intrinsic functions, and numerical

constants. Math Expressions will be described in more detail in section 4.5. Here are some typical

Path Parameter statements (see also appendix A):

Path 1 = feff0001.dat % 1st output path from feff

Id 1 = Path #1: Single Scattering - first neighbor

e0 1 = e0shift

delr 1 = delr_1

sigma2 1 = sig_1

%

Path 2 = feff0002.dat % 2nd output path from feff

Id 2 = Path #2: Single Scattering - second neighbor

e0 2 = e0shift

delr 2 = delr_1 * sqrt(2)

sigma2 2 = sig_2

4.2 Defaults for the Path Parameters, and the 0th Path

Every Path Parameter must be speci�ed for every path in the �t. This is often inconvenient

for Path Parameters that are same for all paths, as will often happen for the Path Parameters S02,

e0, and ei. And since there is already plenty of opportunities for typing mistakes in feffit.inp ,

anything to avoid useless repetition is worthwhile. So, you can assign default values for each of the

Numerical Path Parameters, using the 0th Path (i.e. the path with Path Index 0). The Numerical

Path Parameters for the 0th Path are interpreted as Math Expressions, as for any other path. If any

Numerical Path Parameter is not explicitly written in feffit.inp , the value for that Parameter

will be taken from the value for 0th Path. For example, writing

S02 0 amplitude,

and then simply not mentioning S02 for any other paths assigns S02 the value of amplitude for all

paths. It is important to remember that the 0th path gives the default value, not an overall value.

If a Numerical Path Parameter is explicitly mentioned for any path, the default value will not be

used for that path. The defaults for the 0th Path Parameters are 0.0 for all Path Parameters except

S02, which has default 1.0. This means that if you don't mention a Numerical Path Parameter for

any path, including the 0th Path, then that Parameter will be set to zero (or one in the case of

S02) in the �t. The Path Parameter Id has a default which is a label made from the path's �le

feffit Variables and Parameters in Fitting 13

name and the half-path-length (R

e�

), number of equivalent paths, and number of scattering legs

in the path. The Path Parameters Path does not have a default.

4.3 Variables

The variables in the �tting problem are chosen by the user and are conceptually separate from

the Path Parameters. This formalism lets the variables be the physically interesting quantities for

the system, and also allows constraints to be easily placed on the di�erent Path Parameters in

the problem. All variables must be de�ned in feffit.inp , or the program will complain that it

doesn't know what you want it to do. To de�ne a variable, the keyword guess is used with the

following syntax:

guess hdelimiteri Variable Name hdelimiteri Initial Guess

where the Initial Guess is the real number that will be used as the starting value for this variable

in the �t. The �nal results should not depend strongly on the value of the initial guess for most

physically reasonable variables. The initial guess can a�ect the computation speed. Variable names

are character strings up to 40 characters long that meet these two requirements

1. contain no white spaces (blanks and/or TABs), or +, -, *, /, ^, (,), !, or %.

2. The �rst character is not a numeral.

Variables are checked before the �t begins to make sure that they are de�ned and that they

are used in the �t. If any named value has not been speci�cally de�ned as a variable or User

De�ned Variable (that is, if it hasn't been guessed or set), feffit will stop and complain that

some variable was unde�ned. Variables that are de�ned but not used by any Path Parameters or

User-De�ned Functions will cause a warning, but feffit will not stop. Variables that are de�ned

and used but end up having no e�ect on the �t are not investigated before the �t is done. Any

such \null variables" will prevent uncertainties from being estimated for all variables.

4.4 User De�ned Functions

User De�ned Functions are like variables, only they are \set" so that their value is not directly

adjusted in the �t. You can use up to 200 of them. Like variables, they are chosen by the user, not

by feffit. Like the Path Parameters, they are written as Math Expressions of the variables, real

numbers, and other User De�ned Functions. This means that their values might change during the

�t (if they depend on any of the changing variables), but they don't count as separate variables.

The names of the User De�ned Functions follow the same rules as the names of the variables. The

syntax for de�ning a User De�ned Function is:

set hdelimiteri User Defined Function hdelimiteri Math Expression.

Some examples of User De�ned Functions are:

set hbar_c = 1973. % set to a constant

set golden_mean = (1.0 + sqrt(5)) / 2 % calculate a constant number

set halfpi = pi/2

set sinxpi = sin(x*halfpi) ** 2 % these depend on other named

set b2_&_c2 = b**2 + c**2 % values which could be variables

set max_x_y = max(x, y) % or other user-defined functions

User De�ned Functions can be used to name constants (like halfpi) or to break up formulas.

They use other named values in their de�nitions, and that the status of the named value as a

variables or User De�ned Function does not matter to the de�nition. In the above de�nition of

sinxpi, b2 & c2 and max x y do not care whether x, b, c, or y are variables or other User De�ned

Functions. Only the numerical values matters.

feffit Variables and Parameters in Fitting 14

One of the best uses of the User De�ned Functions is to make a
exible way of constraining

variables. As an example, a User De�ned Function can be assigned to each Path Parameter that

is to be changed in the problem. Some of these can be true variables in the �t, and some can be

dependent on the true variables. Here is part of a feffit.inp to help illustrate this:

sigma2 1 = sig1 % these are all path parameter

sigma2 2 = sig2 % statements for the sigma2

sigma2 3 = sig3 % parameters of paths 1, 2, 3, and 4

sigma2 4 = sig4 %

%

guess sig1 = 0.00000 % a variable

set sig2 = sqrt(3) * sig1 % a user-defined function

%

guess sig3 = 0.00000

set sig4 = sqrt(sig3^2 + 2*sig2^2)

There are two variables for the four Debye-Waller factors. But it is easy to change set to guess

to change the number of variables. The point is that the e�ect of the quantities (sig1,...,sig4)

on the XAFS Path Parameter doesn't change, only their status as variables.

In general, both User De�ned Functions and Path Parameters have values that will change as

variables in the �t change, even though they are not directly varied in the �t. How they depend on

the set of variables is left entirely up to you. You choose what gets varied, and how the physically

important part of the system (presumably what you're trying to measure), will alter the XAFS

signal in terms of the boring Path Parameters. Please try to come up with a set of variables

better than Debye-Waller Factors and neighbor distances, so that feffit can help you measure the

physical parameters you're interested in, and that people who've never done XAFS can understand.

Finally, a warning should be given about recursive de�nitions of the User De�ned Functions

(that is some User De�ned Function referring to itself, even if through intermediate steps). These

are di�cult to check for | so be careful. I've only see this problem once (and that was a typo of

my own), but beware of doing something like this:

set a = b + 1

set b = a

because a and b will diverge as the User De�ned Functions are repeatedly evaluated!

4.5 Math Expressions

The character strings for the Numerical Path Parameters and User De�ned Functions are

interpreted as Math Expressions. These are made up of simple algebraic expressions, using numbers,

named values (no distinction is made whether a named value was guessed or set), simple math

operations, and intrinsic functions. FORTRAN syntax is followed, and the case of the strings is

ignored. The supported math operations are *, /, +, -, **,and ^. Exponentiation can be done

with ** or ^. Supported intrinsic functions are abs, exp, log, sqrt, sin, cos, tan, asin,

acos, atan, sinh, cosh, and tanh. All trigonometric functions use radians. The value of � can

be accessed with the named constant pi. The two-component intrinsic functions min and max are

supported, and return the minimum and maximum value of two arguments, separated by a comma,

as in min(x,y). All math is done in single precision.

Standard math precedence (quantities inside parentheses �rst, from inner to outer parenthe-

ses, then ** and ^, followed by * and /, and then �nally + and -) is followed, but parentheses

are encouraged to avoid confusion. If anything does confuse these routines (unde�ned variables,

feffit Variables and Parameters in Fitting 15

arguments out-of-range, or nonsense math operations), they will return an error message and a

value of zero. Further questions or suggestions about this part of feffit are welcome.

Besides the standard math intrinsic functions, there are a few additional intrinsic functions

that are useful for XAFS analysis. The �rst of these is the constant reff, which gives the value

of the half-path-length, R

e�

, for the \current path". (The current path is the one that feffit is

considering as it sums over paths.) The utility of reff is easily demonstrated with the 0th path.

For example, saying

delr 0 = reff * expansion parameter

gives a convenient (and fool-proof!) method for modeling a lattice expansion without having to

manually enter all the di�erent path lengths. It might get confusing to use reff in User De�ned

Functions (set statements). It's always OK to use reff in any Path Parameter statement, including

those for the 0th path.

The second XAFS intrinsic function will calculate a value for �

2

for a path given a value for

the temperature and Debye Temperature using the correlated Debye Model implemented by Rehr,

et al. in feff. The function is called debye, and has the syntax

debye(temp, theta)

where temp and theta represent the temperature and Debye Temperature, respectively (both in

Kelvin). The comma between the temperature and the Debye Temperature is required. The tem-

perature and Debye Temperature are actually Math Expressions themselves, and can be numbers

or named quantities that have a set or variable value. This points to real utility of this function |

the Debye Temperature can be a �tting variable. It should be noted that the Debye-Waller Factor

depends not only on the temperature and Debye Temperature, but also on the physical details of

the path (where the atoms are, and what their masses are), so that somehow these path details

need to be used. This information is in fact given in the feffnnnn.dat �les, and feffit simply

uses the values from the \current" path. This means that, like reff, it is probably clearer to use

the debye function in a Path Parameter line. Using it for the 0th path is always OK.

The third (and last | but we're taking suggestions) XAFS intrinsic function will also calculate

�

2

for a path, and is very similar in use to the Debye function above, but uses the somewhat simpler

Einstein model. This model could actually be done by hand as,

�

2

=

(�hc)

2

2k

B

coth(�=2T)

M

R

�

(4:1)

where M

R

is the reduced mass, � is the Einstein temperature, and T is the temperature. The built

in function is easier, because it gets the units right the �rst time and it �gures out the reduced

mass for the current path. The syntax is

eins(temp, theta).

For multiple scattering paths, the reduced mass of the whole path is used (that is, by adding the

reciprocals of the masses). Like for the debye function, temp and theta are Math Expressions,

and can be numbers, \set" values, or variables. The Einstein model seems to work better than

the Debye model for single scattering paths with small disorders, but your mileage may vary. At

this point we recommend trying both the Einstein and Debye model, and seeing which gives better

results.

Chapter 5 16

Goodness of Fit and Uncertainties in Variables

This chapter deals with statistics and error analysis, a �eld that is by its nature uncertain.

The procedures used by feffit are as close to the \standard techniques of data �tting and error

analysis" as possible. See Data Reduction and Error Analysis for the Physical Sciences by Philip

R. Bevington and Numerical Recipes by Press, et al. for good introductions to these topics. If you

think that any issues of �tting or error analysis are being overlooked or could be improved, please

let us know. The topics in this chapter are extremely important to XAFS data analysis and we

welcome any discussion of them.

5.1 �

2

as a measure of the Goodness of Fit

The best set of variables in feffit will minimize the sum of the squares of the di�erence of

model and data XAFS. The statistic called chi-square, written �

2

, is a scaled measure of the sum

of squares of a function, is generally considered the best �gure of merit to judge the quality of the

�t. The standard de�nition of �

2

,

�

2

=

N

X

i=1

�

f

i

�

i

�

2

; (5:1)

requires 3 quantities: (1) f

i

, the function to minimize; (2) N , the number of function evaluations;

and (3) �

i

, the uncertainties in the function to minimize. feffit allows the �t to be done in R- or

k-space, but there is no conceptual di�erence in the way the �t is done. In either case, the function

to minimize consists of the real and imaginary parts of the di�erence between data and full model

XAFS (either ~�(R) or ~�(k)) over the �t range. To be speci�c, when �tting in R-space the function

to minimize is

f(R

i

) = ~�

data

(R

i

)� ~�

model

(R

i

); R

min

� R

i

� R

max

; (5:2)

and when �tting in k-space, the function to minimize is

f(k

i

) = ~�

data

(k

i

)� ~�

model

(k

i

); k

min

� k

i

� k

max

: (5:3)

For the rest of this chapter, I'll use f

i

as the elements of the function to minimize, without specifying

which of the two options is used. Note that these elements are squared in Eq. (5.1), so that the

sign of f

i

is unimportant.

Since there is one real and one imaginary evaluation for each data point, the number of

evaluations is N = 2(R

max

� R

min

)=�R when �tting in R-space and N = 2(k

max

� k

min

)=�k when

�tting in k-space. Here �R and �k are the grid spacing in R- and k-space (�k is set to 0:05

�

A

�1

).

R

min

and R

max

(or k

min

and k

max

) are the bounds of the �tting range. Since �R and �k are chosen

arbitrarily, N has no physical signi�cance and is not the right number to use if the scale of �

2

is to

be meaningful. The best number to use is the number of relevant independent measurements, given

by the amount of information in the data concerning the atomic distribution around the central

atom. Note that although the points of �(E) are all independent measurements of absorption,

they are not independent measurements of the atomic distribution function, which is what we're

interested in when analyzing data. From basic information theory, the number of independent

measurements in a spectrum is given by

N

idp

=

2(k

max

� k

min

)(R

max

� R

min

)

�

+ 2: (5:4)

feffit Goodness of Fit and Uncertainties in Variables 17

The qualitative arguments for this are (1) that the conjugate Fourier variables are k and 2R; (2)

that since we're measuring real and imaginary parts of ~�(R), the information must be an even

number of points; and (3) we must have at least one pair of points, even for an in�nitesimally small

R-range. �

2

is then

�

2

=

N

idp

X

i=1

�

f

i

�

i

�

2

=

N

idp

N

N

X

i=1

�

f

i

�

i

�

2

: (5:5)

We are still left with �

i

, the uncertainty in the measurement, which we'll return to in the section

5.2. To simplify matters (and because we don't know anything better to do) feffit uses a single

value � for all values of �

i

. If the uncertainties are dominated by random
uctuations in the data,

then a single value for � is the best that can be done anyway. Assuming for the moment that we

have a reasonable estimate for �, �

2

is then given by

�

2

=

N

idp

N�

2

N

X

i=1

�

�

Re

�

f

i

��

2

+

�

Im

�

f

i

��

2

�

: (5:6)

This is the de�nition of �

2

used by feffit, and is the primary �gure-of-merit to characterize the

goodness of the �t. There is a related �gure-of-merit, called reduced chi-square, denoted �

2

�

. This

is equal to �

2

=�, where � = N

idp

�N

varys

is the number of degrees of freedom in the �t, (where

N

varys

is the number of variables in the �t).

�

2

and �

2

�

are useful for comparing the quality of di�erent �ts. The basic rule is that the �t

with the lowest �

2

�

is the best. This comparison works even if two �ts have di�erent number of

variables. The criterion for assessing if a particular variable is useful in the �t is that �

2

�

will be

lowered for useful variables. If adding a variable causes �

2

to decrease but �

2

�

to increase, the �t is

not improved.

If the errors are dominated by random
uctuations in the data, a good �t should have �

2

�

� 1.

If you want to get picky, the expected deviation of �

2

�

is roughly

p

2=�, so that any �

2

�

> 1+2

p

2=�

would clearly indicate a poor �t. Our experience is that �

2

�

is rarely this close to 1 for concentrated

samples, even for �ts that look excellent by eye. We usually �nd �

2

�

to be more like 10 or 100! This

means that the di�erence between the data and �t is much bigger than the estimated uncertainty

in the data (again, the pesky �). The most likely reasons for a �

2

�

very di�erent from 1, are: (1) the

feff model is not a good representation of the data, (2) � is a poor estimate of the measurement

uncertainty of the data, or (3) the �t R-range does not re
ect the paths speci�ed in the �t. Our

current thinking is that, sorry to say, feff is poor enough that it will not match the data of

concentrated samples to within the measurement uncertainty. (In the example in appendix A, a �t

to the �rst shell of Cu metal gives �

2

�

� 20.)

A poorly scaled �

2

is not a big deal if it is used only to compare the goodness of �t between

di�erent models. And we're mostly willing to say that, even though feff doesn't match our data

to within the measurement uncertainties, we can still rely on the structural parameters that a �t

to a feff model will give. But we do run into a serious problem when trying to interpret the

meaning of a �

2

�

� 1. Speci�cally, it is not clear from the value of �

2

�

alone if hard-to-estimate

systematic errors are drowning out the random measurement errors or if the �t is truly bad. To help

distinguish these two very di�erent conclusions, it is convenient to introduce an R-factor, which is

feffit Goodness of Fit and Uncertainties in Variables 18

scaled to the magnitude of the data itself,

R =

N

X

i=1

�

�

Re

�

f

i

��

2

+

�

Im

�

f

i

��

2

�

N

X

i=1

�

�

Re

�

~�

data

i

��

2

+

�

Im

�

~�

data

i

��

2

�

; (5:7)

This number is directly proportional to �

2

, and gives a sum-of-squares measure of the fractional

mis�t. (We should mention that most of the other XAFS analysis programs use a number more

like this R for their de�nition of �

2

.) Since R does not depend on N , N

idp

, or �, it has a di�erent

interpretation than �

2

. As long as the measurement uncertainty isn't a signi�cant fraction of the

measurement itself (so that the signal-to-noise ratio is much less than 1) we can be con�dent that

any �t with an R-factor bigger than a few percent is not a very good �t. For good �ts to carefully

measured data on concentrated samples, R

�

<

0:02 and �

2

�

> 10 are common. Such �ts are clearly

quite good, as the theory and data agree within a percent. But since the mis�t is much larger than

the random
uctuations in the measured data, we're left with the conclusion that systematic errors

dominate such �ts.

5.2 The measurement uncertainty problem

Estimating �, the measurement uncertainty in the data over the �t range, is the main di�culty

in the error analysis in feffit. � contains both random
uctuations and systematic errors in the

data. The random
uctuations of the data in R-space can be estimated by evaluating the rms value

of the ~�(R) between 15 and 25

�

A. This assumes that the
uctuations are white noise, and that they

are much bigger than the signal past 15

�

A.

Systematic errors in the data are much more di�cult to estimate. (If you could accurately

estimate their size you could probably eliminate them). Some things that may dominate the

systematic errors of ~�(R) are (1) leakage of an imperfect background into the �rst few shells,

and (2) systematic errors in measurements of �(E). You may be able to estimate the size of these

systematic errors by trying di�erent \reasonable" background removals, which, though tedious, will

give an estimate of the �rst systematic error. Analyzing di�erent data scans (taken under di�erent

experimental conditions) may help give an estimate of the second kind of systematic error. Though

strictly not a systematic error in the data, a third source of systematic errors in the �t comes from

the feff calculation itself. Such errors are important because they do contribute to the small

amount of mis�t expected in a good �t.

The scale of � depends on the Fourier Transform parameters used (such as k-weight, ranges, and

window functions), which makes � di�cult to interpret, and not a very intuitive quantity. Assuming

that the noise is dominated by random
uctuations �

R

is linearly related to �

k

(the
uctuations in

the un�ltered data �(k)), the measurement uncertainty in the k-space data, according to

�

k

= �

R

s

� (2w+ 1)

�k (k

2w+1

max

� k

2w+1

min

)

; (5:8)

where w is the k-weighting, and �k is the spacing between points in k-space. �

q

, the random

uctuations in �ltered k-space, are found using the same kind of linear relation between �

q

and �

R

.

If, for any reason, you have an improved estimate of �, (either �

R

or �

k

), you should de�nitely

put it into feffit.inp with either the keyword epsdat or epsr. Note that all contributions to �

should be added in quadrature, and that the value used by default is only the random
uctuation

component. If you specify �

k

, Eq. (5.8) will be used to convert this to �

R

.

feffit Goodness of Fit and Uncertainties in Variables 19

5.3 Error estimation for the variables

B

A

�

2

= �

2

0

+ 1

�

c

�

2

0

y

0

+�y

y

0

��y

x

0

+�xx

0

��x

y

0

x

0

543210-1

5

4

3

2

1

0

-1

Figure 5.1 A contour map of �

2

as a function of two variables, x and y.

The uncertainties in the variables (�x and �y, respectively) are chosen so as

to require that �

2

is increased by 1 from its best value, �

2

0

. The correlation

between the variables is given by cos(�

c

).

feffit will estimate the uncertainties in the variables immediately after the best-�t values of

the variables are found. Occasionally the error estimation will fail, which means that at least one

of the variables does not signi�cantly change the model XAFS. Such \null variables" must be taken

out of the �t for the uncertainties in the rest of the variables to be calculated. feffit will try to

tell you which variables are causing the problem if this happens.

The uncertainties in the variables are estimated using a standard technique of error analysis.

This is well-explained in the standard references, but I'll summarize it here. The goal of the �t

is to minimize �

2

in each of its N

varys

dimensions (where N

varys

is the number of variables in the

�t). Algorithms such as the Levenberg-Marquardt method are able to �nd a minimum for multi-

dimensional �

2

without too much di�culty. In order to do this, the �rst and second derivatives

of �

2

are found with respect to each of the variables (second derivatives are found for each pair of

variables). These derivatives are used for �nding the next estimate of the best variables, and turn

out to be useful for estimating the uncertainties in the variables after the best �t has been found.

At the best-�t solution, �

2

will be roughly parabolic in each of its N

varys

dimensions. The

(N

varys

�N

varys

) matrix of second derivatives of �

2

around the solution gives the curvature of the

�

2

surface. Figure 5.1 shows a crude rendition of a contour plot of the �

2

surface for a two-variable

problem. At the solution, the variables x and y have values x

0

and y

0

, and �

2

= �

2

0

. As x or y

move away from their best-�t solution, �

2

increases. For \normally distributed" uncertainties, the

contours of constant �

2

will be ellipses for two dimensions (and higher order ellipsoids for more

than two dimensions). The uncertainty in the value of a variable is the amount by which it can be

feffit Goodness of Fit and Uncertainties in Variables 20

increased and still have �

2

below some limit. For randomly distributed errors, �

2

0

+ 1 is a common

criterion, and is the one used in feffit. From Fig. 5.1, the uncertainties in x and y are �x and

�y, and are those values which ensure that �

2

is increased by 1 from its best value.

Note that when evaluating the uncertainty in a variable, all the other variables are allowed

to vary, so that the correlations between variables can be taken into account. The correlation is

a measure of how much the best-�t value of one of the variables changes in response to changing

another variable away from its best-�t value. In Fig. 5.1, the correlation of the variables x and y is

something like cos(�

c

), the \projection" of �x on �y. If the variables were completely uncorrelated,

the ellipse in Fig. 5.1 would have its major and minor axes parallel to the x and y axes. The point

of this discussion is that if the correlations were ignored, and y were held constant, the uncertainty

in x would be estimated to be �x

0

. This is considerably smaller than �x, and is a worse estimate

of the uncertainty in x because a �t with x set to x

0

+ �x will give a �

2

= �

2

0

+ 1.

Algebraically, the uncertainties in the variables are given by the inverse of the curvature matrix

(the matrix of the second derivatives), called the correlation matrix. The uncertainties in the

variables are the square roots of the diagonal terms, and the correlations between pairs of variables

are given by the o�-diagonal terms of this matrix. This is very easy and useful to do, and gives

a good estimate of the uncertainties, as long as the curvature matrix can be inverted. (Matrix

inversion will fail if a variable does not a�ect the �t because the second derivative of �

2

will be zero,

and the curvature matrix will be singular.) Although it may not be obvious, the matrix inversion

technique gives values for the uncertainties that will increase �

2

by 1, as shown in Figure 5.1 (the

key is that matrix inversion is division by 1).

Since �

2

increases by 1 to give the uncertainties in the variables, the scale of �

2

is very

important. The scale of � is therefore critical in getting good estimates of the uncertainties, and

we're back where we were at the beginning of the chapter. Unless � is correctly estimated, �

2

will

be wrong, and then the estimates for the uncertainties will be wrong. But there is away around

this problem if we are convinced that a �t is good (based on a small R) even if �

2

�

is much larger

than 1.0, so that we assert that � that is too small (because we did not include systematic errors).

The trick is that the value of � can be rescaled by a factor of (

p

�

2

�

) so that �

2

�

will be forced to

be 1. But we don't need to redo the �t or matrix inversion, we can just multiply the uncertainties

themselves by

p

�

2

�

. The numbers reported by feffit for all the uncertainties in feffit.log are

rescaled in this way by

p

�

2

�

. It is important to remember that this trick gives reasonable estimates

for the uncertainties at the expense of using �

2

�

for measuring the goodness of �t. It assumes that

the �t is good (by forcing �

2

�

to 1), and that signi�cant systematic contributions to � were ignored.

Uncertainties are calculated only for the variables in the �t, not for the User-De�ned Functions.

Because the User-De�ned Functions can depend on the variables in fairly complicated ways, the

uncertainties in them are too hard to work out in general. You'll need to use the standard techniques

of partial derivatives (see, Bevington's book, for example) to work out the propagation of errors in

the errors to errors in functions of the errors.

All of the error analysis parameters discussed in this chapter will be written to feffit.log .

The values for N

idp

, N

varys

, �, �, �

2

, and �

2

�

and R will all be written to this �le. The uncertainties

(already rescaled by

p

�

2

�

) are listed with the best-�t values. Correlations between variables are

sorted so that the most highly correlated are listed �rst. One warning about correlation of two

variables should be mentioned. If two variables are completely correlated (i.e., the correlation is

greater than 0.999 or less than -0.999), then these two variables are not really di�erent, and one of

them can be eliminated.

Chapter 6 21

The XAFS Equation and FEFFIT Algorithms

In this chapter I'll give the details the numerical procedures and algorithms used in feffitin as

much detail as possible. This chapter is designed to tell you \what feffit really does" in some part

of the code. I'll try to be coherent and concise, so any further questions about the algorithms are

welcome. Suggestions for improving any part of feffit will be greatly appreciated. I'll start with

the XAFS equation feffit uses to determine the model XAFS function in terms of the variables.

Then I'll go through the larger structure of the program. Finally, I'll discuss some the important

algorithms feffit uses including Fourier Transforms and interpolation.

6.1 The XAFS equation

The model calculation for �(k) in feffit is given by

�

model

(k) =

X

Paths

�

path

(k;Amp(k);Phase(k);PathParameters):

�

model

(k) is the sum over paths of �

path

(k), which is a function of the Phase and Amplitude from

the feffnnnn.dat �le for the path (which are functions of k), and the Numerical Path Parameters,

which are the physical quantities that feffit will use to vary �

path

(k). As described in chapter

4, the Path Parameters are the physical quantities which alter the XAFS of a scattering and are

written in terms of variables and User De�ned Functions. The feffit model uses the values of the

Path Parameters S02, e0, ei, delR, sigma2, third, and fourth to write �

path

(k) as:

�

path

(k) = Im

(

Amp(k)�N

degen

� S02

k(R

e�

+ delR)

2

exp

�

� 2p

00

R

e�

� 2p

2

sigma2+

2

3

p

4

fourth

�

� exp

�

i

�

2kR

e�

+ Phase(k) + 2p (delR� 2

sigma2

R

e�

)�

4

3

p

3

third

�

�

)
: (6:1)

p

0

and p

00

are the real and imaginary components of the the complex momentum with respect to

E

0

(the bottom of the conduction band), and are evaluated as

p = p

0

� ip

00

=

s

�

Re(p)(k)�

i

�(k)

�

2

� i ei

�

2m

e

�h

2

�

: (6:2)

k is the real momentum respect to E

Fermi

), evaluated as

k =

r

k

2

FEFF

� e0

�

2m

e

�h

2

�

: (6:3)

The quantities Amp, Phase, Re(p), and � in the above equations are all functions of k

FEFF

, and

are taken from the feffnnnn.dat �le for that path (as is k

FEFF

itself. N

degen

, and R

e�

are also

taken from this �le. The value of N

degen

will be taken from feff for all paths unless the Nodegen

ag is set, in which case all values of N

degen

will be set to 1.

The fact that both the purely real k and the complex p are used for this calculation of �

path

(k)

needs some explanation. p is the preferred momentum since it is more like the Hermitian conjugate

to r, the position operator of the photo-electron. The di�erence between the two is fairly small for

feffit The XAFS Equation and FEFFIT Algorithms 22

momentums above a few

�

A

�1

and it could probably be argued that using a constant energy origin

is a more serious problem than which origin to use. We use p consistent with feff. This is shown

explicitly everywhere that anything from feff is changed. But we use k everywhere where the the

feff calculation is being reconstructed. feff actually calculates ~�(p) as a complex function of the

complex momentum and then breaks this into amplitude and phase terms as a functions of k when

writing its outputs. So all the occurrences of k in Eq. (6.1) are to carefully reconstruct the feff

calculation before altering it with the Path Parameters.

The phase term �4p sigma2=R

e�

in Eq. (6.1) comes about because the usual cumulant expan-

sion ignores the 1=R

2

dependence of the XAFS signal. This term is the �rst-order correction to

ignoring this term. It is usually quite small, but can be important for systems with large disor-

ders. For more on this, see the article by Rehr, Ingalls, and Crozier in X-Ray Absorption, v.92 of

Chemical Analysis, edited by Koningsberger and Prins.

6.2 The FEFFIT Procedure

feffit is a simple program in that it reads an input �le, reads some other �les, and then

does a single calculation. It always proceeds exactly the same way through the calculation, and

only skips steps if explicitly told to do so. It does not run interactively, and there is no way to

stop in the middle or go half way back to change something. Here are the steps feffit takes from

beginning to end:

1. feffit reads feffit.inp . All the input
ags and commands described in chapter

3 are set. Math Expressions for User De�ned Functions and Path Parameters are

translated into quickly decodable form as they are read. The Math Expressions are

checked for syntax errors and to ensure that all variables are de�ned and used.

2. The Experimental data �le is read. If needed, the data are interpolated to uniform

k-spacing with �

k

= 0:05

�

A

�1

. Values for the �t and Fourier Transform ranges may

be adjusted slightly to re
ect these data ranges.

3. The feffnnnn.dat �les are read.

4. The best-�t values for the variables are found.

5. The uncertainties in the variables and correlations between variables are estimated

by inverting the curvature matrix, as discussed in chapter 5.

6. feffit.log is written. This will contain best-�t values for the variables, their

uncertainties and correlations, and goodness-of-�t statistics. User De�ned Functions

and the Path Parameters for each path will also be written.

7. Output data �les are written. These will contain data, full �t, and the contribution

to the �t from each path. The outputs will be written in k�, R�, and backtrans-

formed k�space.

Step 4 is the hard part (deciding how to improve the values of the variables, and when these values

are good enough to quit) is done by standard non-linear least squares routines (from minpack), so

we don't have to worry too much about it.

But we do need to provide the function to be minimized for a set of variables so that the

least-squares black-box can evaluate this function for any set of variables. Let me represent the

set of variables be the vector x (there may be more than one). The function to be minimized , f

(which is a vector because it is a complex function of either R or k), is found for a given x in the

following way:

feffit The XAFS Equation and FEFFIT Algorithms 23

1. �

model

(k) is formed by summing the contribution from each path over the Path

Index. For each path:

a. The User De�ned Functions are determined in terms of x. Note that this is

done for each path, so that path dependent quantities like reff can be used

in the User De�ned Functions.

b. The Path Parameters, (S02, delR, etc.) are determined in terms of x and the

User-De�ned Functions.

c. �

path

(k) for this path is found using Eq. (6.1).

d. This �

path

(k) is added to the total �

model

(k).

2. The total �

model

(k) is Fourier Transformed into R-space (and then into k-space if

�tting in k-space), giving the real and imaginary parts of ~�

model

.

3 The �tting function, f is determined by subtracting ~�

model

from the ~�

data

(which

was already formed from the data �

data

(k) before the �t was started) over the

�tting range. This is a complex function of R or k, found using either Eq. (5.2) or

Eq. (5.3) .

This function f is used by the least-squares algorithm to select an improved set of variables, x, and

these steps are repeated until the sum of squares of the elements of f is minimized. If you're up to

reading FORTRAN, the steps above occur in the subroutines fitfun and chipth.

6.3 Fourier Transforms

Fourier Transforms are pretty common in XAFS analysis, but they need to be discussed here

for completeness. Most XAFS analysis (feffit included) uses

~�(R) =

1

p

2�

1

Z

0

k

w

�(k)W(k) e

i2kR

dk: (6:4)

and

~�(k) =

1

p

2�

1

Z

0

�(R)W(R) e

�i2kR

dR: (6:5)

Of course, discrete forms of these are really used so that the Fast Fourier Transform can be exploited.

The k-space grid is �k = 0:05

�

A

�1

, and array sizes for �(k) and ~�(R) are N

�t

= 512, 1024, or

2048. The array for �(k) is \padded" with zeros past the range of measured data. This \zero

padding" has the e�ect of smoothly �lling in data points in R-space. It also gives an R-space grid

of �R = �=N

�t

�k, and we write k

n

= n�k and R

m

= m�R. The discrete Fourier Transforms used

are

~�(R

m

) =

i�k

p

�N

�t

N

fft

X

n=1

�(k

n

)W(k

n

) k

w

n

e

2�inm=N

fft

; (6:6)

and

~�(k

n

) =

2i�R

p

�N

�t

N

fft

X

m=1

~�(R

m

)W(R

m

) e

�2�inm=N

fft

; (6:7)

These normalizations preserve the symmetry properties of the Fourier Transforms with conjugate

variables k and 2R.

feffit The XAFS Equation and FEFFIT Algorithms 24

While the �tting is being done, the array size N

�t

(which is the number of points between

0 and 10�

�

A in R-space) is set to MFTFIT, which is usually 512 or 1024. This keeps the spacing

between data points not much smaller than the spacing between independent points so that N is

not too much bigger than N

idp

(though it is guaranteed to be bigger), and speeds up the code.

Changing the value of MFTFIT should not signi�cantly a�ect the �t results. If you have a small

number of independent points in the �t range (fewer than 10), and you �nd a truly awful �t by

eye gives a small �

2

, it might be that MFTFIT is too small, and that the �tting got stuck in a \false

minimum". This should be a very rare occurrence, but if it happens, you should increase MFTFIT.

When writing the output R-space data �les, the value of N

�t

is set to MFTWRT, which will normally

be 2048. Both MFTWRT and MFTFIT can be set by the user to be 512, 1024, or 2048.

To transform from �(k) to ~�(R), �(k) may be weighted by k

w

. For both transforms, a Fourier

Transform Window is used to select a �nite data range. This Window is used to smooth out the

data while maintaining some peak separation. The functional form of the Window depends on

Ikwindo) (which gives the the functional form of the window), Kmin, Kmax, Dk1, and Dk2, for the

forward transform (k ! R), and on Irwindo, Rmin, Rmax, Dr1, and Dr2, for the back transform

(R! k). There and currently 8 options for the functional form of the Window. Anything said in

favor of one of the Window types is little more than folklore, with the exception of the Lorentzian

Window (3), which is probably not worth using for XAFS analysis. If using di�erent Windows

gives di�erent numbers for your �t, there is probably something wrong.

Here are the functional forms of the available Fourier Transform Windows in feffit. For

simplicity, all are written as functions of k (The R-space windows are exactly analogous to these

with Ikwindo, kmin, kmax, Dk1, and Dk2 replaced by Irwindo, Rmin, Rmax, Dr1, and Dr2):

Ikwindo Window Type and functional form

0 Hanning Window Sills: The Default Window Type.

W(k) =

8

>

>

>

>

<

>

>

>

>

:

sin

2

�

� (k � Kmin+ Dk1=2)

2 Dk1

�

; Kmin� Dk1=2 � k < Kmin+ Dk1=2

1:0; Kmin+ Dk1=2 � k � Kmax� Dk2=2

cos

2

�

� (k � Kmax+ Dk2=2)

2 Dk2

�

; Kmax� Dk2=2 < k � Kmax+ Dk2=2

1 Hanning Window Fraction: Dk1 is the fraction of the window range that is not

held at 1.00. In the formula below,
 = Dk1(Kmax� Kmin)=2

W(k) =

8

>

>

>

<

>

>

>

:

sin

2

�

� (k � Kmin+ Dk1=2)

2 Dk1

�

; Kmin � k < Kmin+

1:0 Kmin+
 � k � Kmax�

cos

2

�

� (k � Kmax+ Dk1=2)

2 Dk1

�

; Kmax�
 < k � Kmax

2 Gaussian Window: Note that W(k) never goes to zero. Iwindo = 7 gives an

alternate form for the Gaussian window.

W(k) = exp

�

� Dk1

�

2k � Kmax� Kmin

Kmax+ Kmin

	

2

�

feffit The XAFS Equation and FEFFIT Algorithms 25

3 Lorentzian Window: Note that W(k) never goes to zero.

W(k) =

�

1:0 + Dk1

�

2k � Kmax� Kmin

Kmax+ Kmin

	

2

�

�1

4 Parzen Window: This window has linear \sills".

W(k) =

8

>

>

>

<

>

>

>

:

k � Kmin+ Dk1=2

Dk1

; Kmin� Dk1=2 � k < Kmin+ Dk1=2

1:0 Kmin+ Dk1=2 � k � Kmax� Dk2=2

1:0�

k � Kmax+ Dk2=2

Dk2

; Kmax� Dk2=2 < k � Kmax+ Dk2=2

5 Welch Window: This window has quadratic \sills".

W(k) =

8

>

>

>

<

>

>

>

:

�

k � Kmin+ Dk1=2

Dk1

	

2

; Kmin� Dk1=2 � k < Kmin+ Dk1=2

1:0 Kmin+ Dk1=2 � k � Kmax� Dk2=2

1:0�

�

k � Kmax+ Dk2=2

Dk2

	

2

; Kmax� Dk2=2 < k � Kmax+ Dk2=2

6 Sine Window: This gives a half-period over the window range.

W(k) = sin

�

� (Kmax+ Dk2� k)

Kmax+ Dk2� Kmin+ Dk1

�

7 Gaussian Window: An alternate version of the Gaussian window.

W(k) = exp

�

� Dk1

�

k � Dk2

�

2

�

6.4 Public Domain Software and Further Reading

The Fast Fourier Transform and nonlinear last-squares routines used in feffit are public

domain software. The FFT routines used are part of fftpack, written by Paul N. Swarztrauber

at the National Center for Atmospheric Research. I changed some of the dimension statements

in these routines to more closely re
ect the ANSI standard. The least-squares routines used are

part of minpack, written by B. S. Garbow, K. E. Hillstrom, and J. J. More. at Argonne National

Lab in 1980. I changed some of the machine-dependent parameters. Both of these packages were

taken electronically from NETLIB, at AT&T Bell Labs in Murray Hill, NJ which has a large

selection of public domain numerical software that can be taken for free by e-mail, ftp, or over

the Web. Send the e-mail message send index to netlib@research.att.com, or give Mosaic the

URL ftp://netlib.att.com/home.html to get more information.

Appendix A 26

Examples

This is the most important part of this document. I'll go through a simple example of pure

Cu metal in detail, which should get you started on using feffit for any real XAFS problem. The

rest of the document should become much clearer after you start using the program. Appendix B

gives some suggestions for using feffit to solve typical XAFS problems as well as showing some

of the more sophisticated things that feffit can be used for.

All �les mentioned in this chapter should have been included in your distribution of feffit.

If you don't have these �les, contact us and we'll get them to you. All examples use the ASCII �le

type, and have been renamed to prevent feff or feffit from easily overwriting them. Since feffit

requires its input �le to be named feffit.inp , you'll have to copy each of the �les fit*.inp to

feffit.inp to do these example �ts.

The distributed �les include atoms-cu.inp which, if copied to atoms.inp , can be run through

atoms. This will write a feff.inp , which can be run though feff. The twelve distributed

feffcu*.dat �les should be equivalent to the feffnnnn.dat that feff generates. Running atoms

and feff and examining the outputs for this simple example is recommended.

A.1 Pure Cu example #1: FEFFIT without �tting

Below is fit1.inp , which is about as simple as feffit gets. This is not really a �t at all,

and just uses feffit to add up three feffnnnn.dat �les and write the results to k-, R-, and

backtransformed k-space, applying some Debye-Waller Factors, and using an overall S

2

0

. Still, it

shows what a real feffit.inp �le looks like, and how feffit runs. Although feffit is a �tting

program, using it to add up feff �les without doing any �tting is useful, and is a good way to

start any analysis. It is more powerful than using feff itself for adding up feffnnnn.dat �les to

get a theoretical XAFS signal, and can do Fourier Transforms too.

title = Example #1: Cu at 10K & the 1st 3 paths from feff !! NO FIT !!

title = Setting S02 = 0.90 , Using correlated Debye Model

%

data = cutest.dat % input data file name

out = cu1.dat % output file name

% fit R-range and FFT parameters:

rmin = 1.75 rmax = 3.25

kmin = 2.0 kmax = 19.0 dk = 2 kweight = 1

%--

set e0 = 0.0 % e0 offset

set s02 = 0.9 % constant amplitude factor, S02

set temp = 10. % temperature

set Debye_Temp = 315. % Debye temperature for Cu

set sigm_mcm = 0.00052 % McMaster correction from feff.inp

%--

feffit Examples 27

% begin path parameter lists: Parameter, Path Index , character string

Path 1 feffcu01.dat

Id 1 single scattering, R = 2.552, Degen= 12

e0 1 e0

S02 1 s02

sigma2 1 debye(temp, Debye_temp) + sigm_mcm

%

Path 2 feffcu02.dat

Id 2 single scattering, R = 3.609, Degen= 6

e0 2 e0

S02 2 s02

sigma2 2 debye(temp, Debye_temp) + sigm_mcm

%

Path 3 feffcu03.dat

Id 3 double scattering, R = 3.828, Degen= 48

e0 3 e0

S02 3 s02

sigma2 3 debye(temp, Debye_temp) + sigm_mcm

%%%%%%%%%%%%%%%%%%%%%%%%%% end of FIT1.INP %%%%%%%%%%%%%%%%%%%%%%%%%%

Three paths from feff are added together in this \null" �t, with each path being modi�ed

by the Path Parameters S02 and sigma2. Values of sigma2 are found for each path by using the

Correlated Debye Model (see chapter 4) and the \McMaster correction" as calculated by atoms.

At the bottom of the feffit.log �le generated by feffit (fit1.log in the distribution), you'll

�nd that the numerical values for sigma2 are di�erent for the di�erent paths even though the

same Math Expression is used. The Debye function uses the positions and masses of the atoms in

the path as well as the temperature and Debye temperature to give �

2

. The value used for the

McMaster correction here is taken directly from the top of the feff.inp written by atoms. As

further discussed in both the atoms and autobk documents, this addition to sigma2 accounts for

the expected decay of the background absorption coe�cient �

0

(E) that was not included in the

autobk background removal. Since autobk normalizes �(k) by a single number, not by a function

that decreases slightly with energy (as �

0

(E) does), the resulting �(k) for the data decreases slightly

more rapidly than it should, and so the theoretical �(k) should also be made to decrease.

There are �ve User-De�ned Functions (e0, S02, temp, Debye temp, and sigm mcm) though

in this simple example, they are all set to constants. It does not matter that there are User-

De�ned functions (e0 and S02) which are also names of Path Parameters. The syntax of the Path

Parameter statements means that they will never be confused. The third thing to notice is that

all paths have the same Math Expression for Path Parameters e0, S02 and sigma2, making them

excellent candidates for the \0th" path. The portion of fit1.inp describing the Path Parameters

could have been written as

e0 0 e0

S02 0 s02

sigma2 0 debye(temp, Debye_temp) + sigm_mcm

%

Path 1 feffcu01.dat

Path 2 feffcu02.dat

Path 3 feffcu03.dat

feffit Examples 28

which is a more economical and fool-proof way of writing the same information.

A.2 Pure Cu example revisited: FEFFIT with �tting

Now let's add some variables to the Cu example and do a real �t. The �le fit2.inp is pretty

similar to fit1.inp . The important di�erences are the inclusion of several more paths (12 now,

not just 3) and that some of the User-De�ned Functions have been changed to variables (simply

by changing set to guess!), so that fit2.inp will do a �t. There's also an additional variable to

give a change in near-neighbor distance. Here is most of fit2.inp :

%%%%%%%%%%%%%%%%%%%%%%%%%% Start of FIT2.INP %%%%%%%%%%%%%%%%%%%%%%%%%%

title = Example #2: Cu at 10K & the 1st 3 paths from FEFF5

title = Fitting energy0, S02, deltaR_1, and Debye Temperature

title = set temp =10 Kelvin, using correlated Debye Model

%

data = cutest.dat % input data file name

out = cu2.dat % output file name

% fit R-range and FFT parameters:

rmin = 1.75 rmax = 3.25

kmin = 2.0 kmax = 19.0 dk = 2 kweight = 1

%--

guess e0 = 0.0 % e0 offset

guess deltaR_1 = 0.0 % change in near-neighbor distance

set R_nn1 = 2.5478 % 1st neighbor distance

guess s02 = 0.9 % constant amplitude factor, S02

set Temp = 10. % temperature

guess Debye_Temp = 315. % Debye temperature for Cu

set sigm_mcm = 0.00052 % McMaster correction from feff.inp

%--

% begin path parameter lists: Parameter, Path Index , character string

e0 0 e0

delR 0 deltaR_1 * (reff / R_nn1)

S02 0 s02

sigma2 0 debye(temp, Debye_temp) + sigm_mcm

%

Path 1 feffcu01.dat

%

Path 2 feffcu02.dat

%

Path 3 feffcu03.dat

%

Path 4 feffcu04.dat

%

% It goes on like this up to path 12

%%%%%%%%%%%%%%%%%%%%%%%%%% end of FIT2.INP %%%%%%%%%%%%%%%%%%%%%%%%%%

This is a reasonably good template to begin any XAFS analysis. The important things to notice

about the modeling for XAFS data are the use of the \0th" path, reff, and the Correlated Debye

Model. Further suggestions for modeling XAFS data are discussed in appendix B. I also suggest

assigning every number with \set" rather than just writing the numbers in wherever they're needed,

feffit Examples 29

R (

�

A)

I

m

[

~

�

(

R

)

]

(

� A

�

3

)

543210

9

8

7

6

5

4

3

2

1

0

Figure A.1 j~�(R)j of data (dashed) and best-�t (solid) for pure Cu at

10K. Fitting was done using fit2.inp , over an R-range of [1:75; 3:25]

�

A.

The results of this �t are further discussed in the text.

and not using any numbers in the Path Parameter section. For example, R nn1 and temp here

are set as numbers here even though they're only used once. This makes it easier to change the

numbers. And maybe later on you'll want to vary something that you originally thought had a

constant value.

The results of the �t from fit2.inp is shown in Fig. A.1, which shows an excellent agreement

between theory and data over the �t range, R = [1:75; 3:25]

�

A, and even reasonable agreement for

R past 3:25

�

A, even though the high-R part of the spectrum is not being �t. If you're using ASCII

�les, this plot is of the fourth columns of cu2r.dat and cu2r.fit . For UWXAFS �les, this data

is held in records with nkey=1 and 2, respectively, of cu2.rsp . Please make sure that you can

generate a picture similar to Fig. A.1 | you really can't do data analysis without looking at the �t

results. You are also strongly encouraged to look at the contributions from the twelve individual

paths that make up this �t, and especially where in R-space the di�erent paths show up. The �t

results in original and backtransformed k-space should also be look at.

Goodness-of-�t parameters for this �t and the best-�t values and estimated uncertainties in

the variables can all be be found in feffit.log . From this �le, we read that the N

idp

= 16, and

N

varys

= 4, so that � = 12. We also see R � 0:0022, which means the data and theory agree

to 2 parts in a thousand over the �t range, indicating a very good �t. The values for �

2

and �

2

�

are � 312 and � 26, respectively. Following the discussion in chapter 5 about the need to include

systematic errors when scaling �

2

(and the assertion that they were not included in the estimate

of the measurement uncertainty �), the uncertainties estimated are chosen to increase �

2

by �

2

�

.

feffit Examples 30

The values found for the four variables and the uncertainties found (having already been rescaled

by feffit) are then e0 � �0:10 � 0:26 eV, deltar 1 � 0:0097� 0:0016

�

A, s02 � 0:943 � 0:026,

and debye temp � 314:1pm15:2K. The variables e0 and deltar 1 are found to be signi�cantly

correlated (C � 0:83), while s02 and debye temp are anti-correlated (C � �0:87).

After verifying that you can get these values and look at the �t results (there's always a hard

part), you should be able to edit and play with fit2.inp , and become an expert at �tting Cu

XAFS. Then you'll be ready to analyze your own data, doing sophisticated multiple-scattering �ts

with ingenious constraints. But �rst, ere are some suggestions for how to play with the Cu data to

get a better feel for what feffit can do. These aren't required, only suggested, and they're not

listed in any particular order:

1 Change the k-range, dk, k-weighting, and even the Fourier Transform Window type (using

iwindo). If the results change what does that mean? Is knowing how a variable depends on

k-weighting important? (It is.) Notice that Kmax and Kmin determine N

idp

, but have slightly

di�erent meanings in some of the Fourier Transform Windows.

2 Increase the R-range, so that the �t is done over all twelve paths. First try this with the

Correlated Debye Model. Notice that all the linear paths at twice the near-neighbor distance

have the same Debye-Waller Factors, and that this is twice that of the near-neighbor. This is

a general result of this model, and a very useful way to constrain Debye-Waller Factors.

3 Try �tting without the Debye Model, �tting the individual Debye-Waller Factors separately.

Then try the Einstein Model.

4 Fit in k-space, trying some of the di�erent ways to calculate the Debye-Waller Factors.

5 Go all the way back to the autobk example, and remove the background and then analyze

the 50K and 150K Cu data. This is almost like starting over, and should get you completely

ready for your own analysis.

The basic ideas here are probably useful for general data analysis | start small, with the �rst

neighbor distance, and work your way out in R-space until you can't get anything else from the

data. Depending on how complicated your system is, you may need to start with more than just

one or two paths, and you may not be able to �t the �rst shell without multiple scattering. But

you can still start small, and work your way up.

Appendix B 31

Suggestions for Building Physical Models with FEFFIT

The examples in appendix A are intended as tutorial introductions to feffit. You are no

doubt trying to �t something more interesting and di�cult than Cu. And although the tutorial

examples show many aspects of using feffit to model XAFS data, there are some subtleties and

tricks that you may want to use to get the most out of your data. The hardest part of using feffit

is �guring out how to cut down the number of variables, and how to make a reasonable set of

constraints of the Path Parameters so that some physics is put in the problem. In this appendix I

will try to explain some of the modeling ideas and physical insight we've come up with for feffit.

We hope that this appendix will provide the kinds of suggestions that can inspire you to �nd a

creative solution to your modeling needs. And if you come up with some creative solutions to

XAFS problem using feffit, we'd love to hear about it.

The examples in appendix A did, in fact, use a few modeling tricks. The use of the Debye

function and reff in the Cu example allowed many Path Parameters to be reduced to two variables

(the Debye Temperature and �R

1

, with a linear expansion model). Though simple, these are the

types of tricks that will be discussed in this Appendix. All the tricks will be illustrated with parts

of input �les, and are included in the �le suggest.inp .

B.1 Simple Numerical Constraints

Often times you know ahead of time that some variable or Path Parameter has a range of values

that is \reasonable" and a range that is \unreasonable". A typical example would be the assertion

that no number for �

2

should be negative. Non-linear least-squares �tting does not usually allow you

put any constraints on the variables in the �t (i.e., the things that are guessed are unconstrained),

so that it is not possible to tell the program to allow sigma2 to vary, but to make sure that it is

not negative. But the User-De�ned Functions can be constrained, so that you can write a function

of the variable sigma2 that is constrained and use that constrained User-De�ned Function for the

Path Parameter. There are a few ways to write a function that is guaranteed to be non-negative.

Here's one solution:

% ----------------------------

guess ss2 = 0.0 % ss2 will vary without constraint

set sigma2_1 = abs(ss2) % while sigma2_1 will be non-negative

%

sigma2 1 sigma2_1

% ----------------------------

This is a particularly simple case. What if you want sigma2 1 to be bigger than some value, x?

Just use set sigma2 1 = abs(ss2 + x). But now what if you want to place both upper and lower

constraints on some value? Say, for example, that you think S02 should not be smaller than 0.5,

but you also want to prevent it from being larger than 1.0? Again, there a few ways to do this.

The solution I prefer uses both the max and min functions:

% ----------------------------

guess amp = 0.70 % amp will vary freely

set lower = 0.50 % lower bound for s02

set upper = 1.00 % upper bound for s02

%

s02 0 max(lower, min(upper, amp)) % constrained path parameter

% ----------------------------

feffit Suggestions for Building Physical Models with FEFFIT 32

This allows the upper and lower limits to be changed easily. Be careful when doing this. Mixing

up min and max or setting lower to be greater than upper will not allow s02 to vary at all, and

will probably make amp a null variable that kills the error analysis. Finally, after telling you how

to do these things, I'll ask why you need them? If you really need the constraint, the best �t must

want to give values for the variables that you consider to be physically unreasonable. This should

disturb you and inspire you to think more carefully about the model you're using.

B.2 Using More Than One E0 Shifts

This is easy to put in feffit.inp . You simply put use di�erent e0s for di�erent paths. The

question is: Why would you ever need more than one e0? feff makes various approximations

which can be roughly corrected by shifts of e0, including incomplete core-hole shielding, a lack of

angular variations of the valence charge distribution, and a lack of charge transfer between atoms

in polar materials. Such approximations are worst for insulating materials with covalent or ionic

bonds. In such cases it is probably important to use one e0 for the near-neighbor, and another

for the rest of the neighbors, which will compensate for the incomplete shielding of the core-hole.

You might even might try more than two e0s for some materials. We've found that using two e0

improves the �t quite a bit for a variety of ionic and insulating materials, with the typical result

that the two are a few Volts apart and well outside their estimated uncertainties. In BaZRO

3

(see

Haskel et al., in press), as many as four e0s were found to each signi�cantly improve the �t. These

have been interpreted as accounting for angular variations of the valence charge density as well as

incomplete shielding of the core-hole at the �rst neighbor.

B.3 Measuring the Number of Near Neighbors

This is a particularly important and common problem in XAFS analysis. But there are a

few complications in getting the coordination number from XAFS data. The �rst is that both

the number of near neighbors and the passive electron amplitude reduction factor (N

degen

and S

2

0

in equation Eq. 6.1) contribute to the XAFS for a given path in exactly the same way, meaning

that they are almost completely correlated quantities. This is why there are not separate S02 and

N degen Path Parameters in feffit. The upshot of this is that the number of near neighbors cannot

be precisely and accurately determined without an equally precise and accurate measurement of

S

2

0

. The most likely possibility for overcoming this problem is to get S

2

0

by some other means. To

a good approximation, S

2

0

is transferable between di�erent systems with the same central atom. In

principle, you ought to be able to measure S

2

0

for each element once (as on a sample for which the

coordination number is not in doubt), and set that number in all other �ts to get good measurements

of the coordination number. However, such measurements must be done carefully to minimize

experimental distortions in the XAFS amplitude.

But what if you don't have any idea what S

2

0

is, and you still want to measure the coordination

number? One possibility is to assert that S

2

0

is the same for all paths in the solid. This removes at

least some of the interdependence between S

2

0

and the coordination number, so that you can �t S

2

0

for a few di�erent paths and the coordination number for just one (say the shortest path), but this

still isn't perfect. A better way to get a good value for S

2

0

is to use the temperature-dependence of

the XAFS (over some range for which N

degen

is also constant). S

2

0

will not depend on temperature,

and the temperature dependence of the �

2

for the �rst neighbor (or the neighbors with the strongest

backscattering) should be fairly simple. Most bonds are well-approximated by an Einstein oscillator

so that �

2

is given by Eq. (4.1). As a last resort, or a zeroth order approximation, the value of S

2

0

can be set to 0.9, which is expected to be correct to about 10% for all systems.

The second complication is a procedural artifact of the way feffit sums over feff paths.

feffit uses the value of N

degen

from the feffnnnn.dat �le, which are going to be totally inap-

feffit Suggestions for Building Physical Models with FEFFIT 33

propriate if you're trying to �t this number. There are two choices: either to keep track of what

was in the feffnnnn.dat �le for N

degen

and �gure it out later or use the nodegen
ag which will

set N

degen

to 1 in Eq. (6.1) for all paths, I prefer the second option.

Here is part of a feffit.inp �le that will �t N assuming that S

2

0

has been given to us:

% ----------------------------

nodegen = true % set all values of n_degen = 1.0

set s02 = 0.9 % s02 from divine providence

guess n1 = 9.0 % fitting the coordination number

%

path 1 feff0001.dat %

s02 1 s02 * n1

% ----------------------------

The key point here is that the constant amplitude for the near neighbor is the product of S

2

0

and

the coordination number. Now, here's part of a feffit.inp �le that will �t both S

2

0

and N for

the �rst shell, assuming that N for the second shell is known.

% ----------------------------

nodegen = true % set all values of n_degen = 1.0

guess s02 = 0.9 % fitting s02

guess n1 = 6.0 % fitting 1st shell coordination number

set n2 = 12.0 % setting 2nd shell coordination number

%

path 1 feff0001.dat %

id 1 a few (6?) near neighbors

s02 1 s02 * n1

%

path 2 feff0002.dat %

id 2 twelve second neighbors, no doubt about it

s02 2 s02 * n2

B.4 Combining Two Types of Near Neighbors

This is also a common problem in XAFS analysis. The solution is pretty similar to the above

problem, but let's do this one too. As an example, let's say we have a Au-Ag alloy, with data on

the Au edge, and a mixture of Au and Ag near-neighbors, at roughly the same distance (so that

feff calculations are roughly transferable) in an FCC crystal. The problem is: How many Au-Ag

near neighbors are there, and how many Au-Au neighbors are there? Since Au and Ag form a

substitutional alloy at all concentrations, I'm going to assert that there are 12 total near-neighbors.

This problem de�nitely needs the nodegen
ag. It could be solved without this
ag, but it's

much too painful. feff will give you two di�erent feffnnnn.dat �les at the �rst neighbor distance,

which I'll call feffAuAu.dat and feffAuAg.dat . Depending on how you do the feff calculation,

these two �les could have nearly any path degeneracy, so it's best just to turn o� this confusion, and

control it all within feffit. Here's the important part of feffit.inp for this problem, ignoring

anything else like distances changes:

feffit Suggestions for Building Physical Models with FEFFIT 34

%

nodegen = true % set all values of n_degen = 1.0

set s02 = 0.9 % from pure Au measurements (?)

guess n_au = 2.0 % fit the number of Au near-neighbors

set n_total = 12.0 % set the number of total neighbors

set n_ag = n_total - n_au % the number of Ag near-neighbors

%

path 1 feffAuAu.dat

id 1 Au-Au single scattering,

s02 1 s02 * n_au

%

path 2 feffAuAg.dat

id 2 Au-Ag single scattering, degen = 1.0

s02 2 s02 * n_ag

%

B.5 Linear Interpolation

The above technique actually has some important aspects that should be further discussed.

Note that two feff calculations (and they might be from di�erent feff runs, too) are used in

feffit as two paths that are combined to give a single physical shell. feffit is an extension of

feff, and can combine paths from di�erent runs. Also note that this technique is an example of

a linear combination of paths, and that the \linear coe�cients" n au and na ag have the physical

meaning of the relative weights for the two di�erent neighbor atoms.

This is a particularly simple case of linear interpolation because the numbers n au and n ag

directly a�ect the amplitude of the XAFS signal, so that using n au and n ag seems natural to

associate with the Path Parameter s02. But linear interpolation only adjusts relative weights of two

di�erent feffit paths, and they don't necessarily have to be interpreted as an amplitude factor.

For instance, the linear interpolation technique could be used to measure a distance change, by

doing two feff calculations with slightly di�erent distances, and linearly combining them. The

input �le would look something like this:

%

nodegen = true % set all values of n_degen = 1.0

set s02 = 0.9 % set s02

guess n_R1 = 2.0 % fit the number of neighbors with R1

set n_total = 12.0 % set the number of total neighbors

set n_R2 = n_total - n_R1 % the number of neighbors with R2

%

path 1 feff00R1.dat

id 1 atoms at R1

s02 1 s02 * n_R1

%

path 2 feff00R2.dat

id 2 atoms at R2

s02 2 s02 * n_R2

%

set R_fitted = (n_R1 * R1 + n_R2 * R2) /n_total

%

feffit Suggestions for Building Physical Models with FEFFIT 35

Note that the values of delr don't change in this example, but that we're still, in some sense,

measuring a distance change. The value of R fitted will give the resulting value of near neighbor

distance and will be written to feffit.log even though it's not actually used in the �t. Although

I don't recommend this as a general way to measure distance (the Path Parameter delr is easier

and more accurate), this does illustrate the general technique of linear interpolation between two

feffnnnn.dat �les, that has shown itself to be fairly useful in lots of disordered systems. Two

di�erent \known" feff calculations are done, and are linearly combined by adjusting the relative

weights, which go in the s02 parameter, and which can be given some physical signi�cance.

B.6 Quadratic Interpolation

What if, for some reason, you don't trust the linear combination technique to give you a good

enough answer? If this seems far-fetched, let me say that there is at least one important case

where it is known to be unreliable on physical grounds. The example case involves focused multiple

scattering paths where the photo-electron scatters at angle near 180

�

. The analysis challenge is

to measure the \buckling" angle, which is how far from collinearity the three atoms are. The

complication is that the scattering amplitude for such nearly-collinear scattering is known to vary

quadratically with �. The linear interpolation trick discussed above is liable to give poor results,

unless we start with two feff calculations with �'s very close to the right value, which isn't very

useful. The solution we came up with (the problem we used this on was mixtures of alaki-halide

compounds and is discussed by Frenkel, et al. in Phys. Rev. B 49, p. 11662, 1994 was to extend the

linear combination of two feff paths to the quadratic interpolation of three feff paths. Quadratic

interpolation is a pretty standard math method. But you may have to blow the dust o� of some

old math handbook to �nd it, so I'll just spell it out for you.

To do this, we �rst need to make a set of feffnnnn.dat basis functions for slightly di�erent

scattering angles. The easiest way to do this is to edit the �le paths.dat output by feff, which

has the complete path geometry for each path. Finding the right path in this �le isn't too hard,

and then you can edit the list of paths to make up any paths you want. So you simply pick some

good \basis" angles for � and �gure out where the atoms are. We �gured that the buckling angle �

would be around 5-10

�

, and certainly less than 20

�

, so I used basis angles of 0, 4, and 16

�

. Here's

the important part of the doctored paths.dat �le:

--

100 3 24.000 index, nleg, degeneracy, r= 5.1053

x y z ipot label

5.105311 .000000 .000000 1 'Br '

2.552655 .000000 .000000 2 'Rb '

.000000 .000000 .000000 0 'Br '

104 3 24.000 index, nleg, degeneracy, r= 5.1053

x y z ipot label

5.105311 .000000 .000000 1 'Br '

2.552655 .089141 .000000 2 'Rb '

.000000 .000000 .000000 0 'Br '

116 3 24.000 index, nleg, degeneracy, r= 5.1053

x y z ipot label

5.105311 .000000 .000000 1 'Br '

2.552655 .358752 .000000 2 'Rb '

.000000 .000000 .000000 0 'Br '

--

feffit Suggestions for Building Physical Models with FEFFIT 36

Running the third module of feff will then create the �les feff0100.dat , feff0104.dat , and

feff0116.dat for the angles 0, 4, and 16

�

. I changed the path indices here so that feff wouldn't

overwrite any other �les, and so the angle could be seen in the �le name. This procedure needs to

be done for all multiple scattering paths at this length, not just this 3-leg paths, but I'll skip over

the rest of the paths for the sake of brevity. Now we're ready for the quadratic interpolation inside

feffit.inp to measure the angle. Here it is:

%

set s02 = 0.9 % set the value of s02

guess theta = 5

%

set theta1 = 0

set theta2 = 4

set theta3 = 16

%

set t21 = theta2 - theta1

set t31 = theta3 - theta1

set t23 = theta2 - theta3

%

path 100 feff0100.dat

id 100 theta = 0 feff calculation

amp 100 s02 * (theta - theta2)*(theta - theta3) / (t21*t31)

%

path 104 feff0104.dat

id 104 theta = 4 feff calculation

amp 104 s02 * (theta - theta1)*(theta - theta3) / (t21*t23)

%

path 116 feff0116.dat

id 116 theta = 16 feff calculation

amp 116 s02 * (theta - theta1)*(theta - theta2) / (-t23*t31)

%

This sort of interpolation would, of course need to be done for all focused multiple scattering paths

at this distance that are a�ected by the change in buckling angle.

As a check of this procedure (and of course, anything this complicated should be checked),

you could make paths at angles ranging from 0 to 20

�

, and generate mock �(k) data �les for each

of these known distortions (by running the feffnnnn.dat �le you generate for each angle through

feffit once and using the k-space output as �(k)). Each of these \data �les" can then be �t using

the feffit.inp above, where � is a �tting variable. When I did this, feffit got the right value

for � to within 1

�

for all angles below 16

�

.

Appendix C 37

Program Notes

This appendix is intended for those who want or need to deal with the source code of feffit,

probably to change some of it because it doesn't work on their machine, or because they've thought

of some way to make the code better �t their needs. If you are setting out to change the source

code, this appendix will probably not be nearly enough guidance, so feel free to contact me.

C.1 Code Portability and Code Compilation

The 1977 ANSI Standard for FORTRAN has been followed closely, so that feffit should

easily compile on any machine and run without any problems. The only signi�cant departures

from FORTRAN 77 are the assumption of the ASCII character set and the use of INTEGER*2

variables for the UWXAFS binary �le handling routines.

There are, unfortunately, aspects of FORTRAN which are machine- and compiler-dependent

by design. One such aspect occurs in feffit in the form of a compiler-dependent dimension for

the \word-length" of the data in the UWXAFS binary �les. The code cannot easily be made truly

standard without signi�cant changes to the UWXAFS binary �le handling routines. The distributed

code will, however, work on most machines, with the notable exception of a Vax. Changing the

�rst executable statement of feffit from vaxflg = .false. to vaxflg = .true. will make the

code work on a Vax.

The UWXAFS binary �le handling routines also use character strings which are 2048 characters

long. Though standard, some compilers need to be told to accept character strings this long. The

notable example of such a compiler is xlf (for AIX, IBM's Unix
avor), which needs the compiler

switch \-qcharlen=2048". While compiling on any machine, we recommend including some form of

array bounds checking. And if you have any problems with the compilation, it may be worthwhile

to turn o� compiler optimization
ags. There may be some persistent, benign compiler warnings

when you compile feffit. There may be an \inconsistent variable type" warning in the routines

from fftpack (routines with names like passf3 and cffti). There may also be \comparison is

always false" warnings when using f2c. These can both be safely ignored.

As shipped, feffit requires about 2 Mb of available RAM. Thus, it may be necessary to change

some of the default dimensions when putting feffit on machines with a small about memory such

as PC's. Dimensions of all arrays are set in parameter statements, so changing them means changing

several identical lines of code, (once for each of the principle subroutines of feffit).

C.2 Adding More Data Types to FEFFIT

If the two data �le formats (UWXAFS, ASCII) are not acceptable or convenient to your needs

(that is, if you prefer using some other format), other choices could be added with a minimal amount

of coding. The input and output of data �les is fairly well-isolated, with subroutine inpdat and

outdat controlling which data format to use. If you'd like another �le format either contact us

about it or follow the example of the routines inpcol and outcol, which read and write �les in

the ASCII column data format.

Appendix D 38

Simultaneous Fits of Multiple Data Sets

D.1 Why read this appendix?, or I'm Sick of This Document

First of all, do not read this appendix until you've written and used your own feffit.inp �les

for at least 3 systems. I don't mean this to be condescending, but this stu� is going to get uglier

than the examples in Chapter 6. Furthermore, this is the �rst release of these feffit features, so

if you've read this far, you're a beta tester! This appendix explains how to use the new features,

and the problems I've run into already.

The basic idea of this appendix is to �t more than one data set at the same time, presumably

constraining physical parameters to be related for the di�erent data sets. Although lots of possi-

bilities come to mind (scans on the same sample at di�erent polarizations, or of di�erent edges in

the same material, etc.) I'm going to restrict the discussion here to the temperature dependence of

a single sample. This should be a fairly obvious and familiar use of multiple data sets. You should

have the example Cu data at 10K, 50K, and 150K, and the example feffit.inp discussed later

in this appendix. If you don't, contact me and I'll get them to you.

Once we start to think about �tting more than one data set at a time, the physical model

we want to �t the data with will almost certainly change. For the di�erent temperatures of the

Cu data, we should use the same value of S

2

0

. We may want to use the same value of R, or we

may want to use a simple model for thermal expansion. The Debye-Waller Factors will, of course,

be di�erent for the di�erent temperatures, but we may want to use just one Debye Temperature

to parameterize them all instead of using three independent Debye-Waller Factors. Di�erent E

0

values might be used, but the data may be aligned well enough that this is not necessary. The

important point of this is that, with multiple data sets we can reduce the total number of variables

used in the �t all the data sets, and therefore make better measurements of them. But in order to

reduce the number of variables, it is important to rethink the model used to �t the XAFS.

D.2 The feffit.inp �le, or Think Locally, Fit Globally

OK, once we want to �t multiple data sets, how do we do it? The simplest thing would be to

just append the feffit.inp �les for the di�erent data sets together. I've tried to make the input

�le as close to this as possible but there are some important di�erences. While it might be useful

to concatenate the di�erent feffit.inp �les and then edit the result, it might be just as easy to

start over with a good editor (i.e., one with cut and paste). Since it's always important to know

what the input �le is going to make the program do, I recommend against concatenation of �les,

for the simple reason that it's too easy to make mistakes that are hard to �nd. I'm telling you this

from experience.

The �rst di�erence is that you need to tell feffit when to stop thinking about one data set

and to start thinking about the next set. The way you do this is to put the line

next data set

between the information for each data set. This must occur on its own line This line breaks

the completely free format of the single data set feffit.inp , but I think that it's not too big of

a hardship. It just means you have to group the �le according to each data set, which you would

almost certainly do anyway.

The second di�erence is that you have to now consider which keyword parameters a�ect the

entire �t (a global parameter), and which a�ect only one data set (a local parameter). Frankly,

some of this is just arbitrary, and you're just going to need to remember which are local and which

feffit Simultaneous Fits of Multiple Data Sets 39

are global. There is a complete list at the end of this section, but �rst let me give a few general

rules:

1 . Variables and User-De�ned Functions (guesses and sets) are global.

2 . Path Indices and Path Parameters are local.

3 . Fourier Transform Parameters are local.

It is important to remember that local parameters are di�erent for each data set. The default for

each of them are the same as given in chapter 3, the default value is NOT the value from the

previous data set.

You must make sure that the variables and user-de�ned are well-de�ned for all the data sets.

Remember that the input �le is read all at once, so that if a value is guessed or set more than one

time in the �le, the last de�nition is used for the entire �t. For example, if you want to set the

temperature to 10K for one data set, 50K for another, and 150K for another, you will want to say

something like

set t010 = 10

set t050 = 50

set t150 = 150

and you most certainly do not want to say set temp = 10 for the 10K data, then set temp =

50 for the 50K data, then set temp = 150 for the 150K data. This will set the value of temp to

150 for the whole �tting. So beware.

The fact that the Path Indices and Parameters are local parameters requires some comment.

Even though you may want to use the same set of feffnnnn.dat �les for each data set in the �t,

you must explicitly state all the paths that are used for each data set. You do not need to worry

about reusing Path Indices, as these are local. So Path 1 for Data set 1 can be the same as Path 1

for data set 2, but it does not have to be.

The rest of the keywords are not so well de�ned, so here's a complete list (beta testers - any

preferences which of these are local?) :

Global Keywords

guess set end next data set

format formin formout all

rlast mft�t mftwrt degen/nodegen

Local Keywords

data title out weight

kspout rspout ksp�t rsp�t

kmin kmax kweight dk/dk1/dk2

rmin rmax iwindo sigdat/sigr

path id s02 e0

delr sigma2 3rd 4th

ei sinqr cosqr dafs

Besides the keyword phrase next data set to separate the successive data sets, there is only one

new keyword for use with the multiple data sets. This is the keyword weight which gives the

relative weight to give to each data set. The default value is 1.0 for each data set. If, for example,

you wanted to give the 10K Cu data twice as much weight as the 50K data, then you would just

feffit Simultaneous Fits of Multiple Data Sets 40

say weight = 2 for the 10K data. The mathematical e�ect of weight on the �t will be discussed

in the next section.

D.3 Matt rants about Information Theory, or It's Only Noise

Even though �tting multiple data sets at a single time is a very desirable thing to do, it turns

out that there's sort of a serious problem that I haven't yet resolved, and I'm not sure a good

solution even exists. The problem is: How do you count the information for more than one data

set? For a single data scan the number of independent points is pretty clearly given as in Chapter 5.

This may seem like a technicality that's not critical to getting a good �t, and it actually should

not e�ect the �t results. But because we don't have a good estimate of the measurement uncer-

tainties, (and often end up rescaling the reported uncertainties by

p

�

2

�

) it does end up a�ecting

the uncertainties in the �t results, and so it ends up being quite important to know how many

measurements have been made. Mostly because it's easy to do, feffit simply adds the number of

independent points from each data set.

Now I'll talk about why simply adding the independent data points from each data set is

probably not correct, and why I don't know of a better way to do it. Your job as a beta tester

includes reading this (read: su�ering through my rant) and scratching your head at least for a

while about the best way to estimate the number of measurements is, and just what exactly the

di�erent measurements are measuring. I'm open to any and all suggestions.

First of all, it's easy to trick feffit by �tting the same data set twice. Almost everyone would

say that the number of independent points is NOT doubled. But what if you used the same data set

twice and used di�erent k-weighting or di�erent �tting regions? Those seem like slightly di�erent

�ts, but certainly not completely di�erent. From a practical point of view, there is a problem with

feffit �guring out whether two data sets are equivalent - you could simply remove one data point.

Now let's say you have two successive data scans. Are these really di�erent measurements of

the same information? Thinking of the number of independent points as the number of parameters

you can �t, it seems ridiculous to say that you can �t twice as many parameters as you can with

just one data scan. But thinking about how well the parameters are measured, it does seem that

you've made better measurements of the parameters. A single scan with 2 second integration time

should probably measure the parameters as well as two scans with 1 second integration times each.

And you should also get the same uncertainties (ignoring systematic errors). But how can feffit

possibly distinguish two successive scans from two very di�erent scans?

Next, let's say you have two scans at two di�erent temperatures. Clearly the local atomic

structure has changed, so some of the information about the local structure is probably changed,

but they're still not completely di�erent for the two di�erent scans. If you were to characterize the

temperature dependence by only a single Debye Temperature, then it could be argued that using 6

scans at di�erent temperatures only improves the measurement of �

D

compared to using 5 scans,

but does not add any new information.

Finally, if you measure the edges of two di�erent elements in one material then you've certainly

added new information, but you'd need to constrain at least some of the structural parameters, so

the information is probably not doubled. Anyway, you get the point that it's not easy to tell how

much information there should be in two data sets. And even if it were it would be easy to fool the

program.

With the important warning that the amount of information has a large uncertainty, here's how

feffit evaluates the information and how the �tting function is formulated when using multiple

data sets. Refer to Chapter 5 for background information. With the subscript j referring to a

feffit Simultaneous Fits of Multiple Data Sets 41

single data set, the number of independent points that feffit uses is given by

N

idp

=

N

data

X

j=1

N

idpj

=

N

data

X

j=1

�

2(k

maxj

� k

minj

)(R

maxj

� R

minj

)

�

+ 2

�

;

and the �tting function is an array with real and imaginary parts of the di�erence between data

and model over the �tting range for each data set,

f

ij

= f

j

(R

i

) = ~�

dataj

(R

i

)� ~�

modelj

(R

i

); R

minj

� R

i

� R

maxj

:

That is, f(R) can be thought of as a matrix containing the di�erence of model and data for the

di�erent data sets. (The rows of this matrix would correspond to the di�erent data sets, and

the columns to the di�erent R-values, and the elements of the matrix would be complex numbers

representing the di�erence between model and data.) The �

2

function that is actually minimized

and used as a measure of the goodness of �t and for estimating uncertainties in the �t parameters

is then given by

�

2

=

N

data

X

j=1

0

@

weight

j

N

idpj

N

j

�

2

j

N

j

X

i=1

�

f

2

ij

�

1

A

:

The use of weight should now be slightly clearer. Again, the problem of how many independent

measurements there are in the set of scans does not seem well-de�ned. If we rescale the reported

errors by

p

�

2

�

this will certainly come back to haunt us. One option would be to get better

estimates of the measurement uncertainties (or improve feff !) so that the value of �

2

were more

reliable. (Though, of course, to know how good the �t is we would compare �

2

to the number of

degrees of freedom in the �t, so we're back where we started.) But let's forget about all that for

now and look at an example.

D.4 An example, or Copper Again?

OK, at this point an example will almost certainly help. Because I haven't gone through many

examples myself, here's an example of the Cu data at 10K, 50K and 150K. The model I'm using is

that:

1 . S

2

0

is the same for all temperatures

2 . The lattice expansion has no temperature dependence.

3 . One value of E

0

for all the data sets is good enough.

4 . The Debye-Waller Factors can all be �t with a single Debye Temperature.

I will discuss the reliability of this model, including how to test whether or not to include an

e0 for each data set, and whether ignoring the temperature dependence of the lattice spacing is

appropriate. But �rst, here's the example feffit.inp �le to �t all three Cu data sets.

feffit Simultaneous Fits of Multiple Data Sets 42

!

!!!!!!!!!!!!!!!!!!!!!!!!! Start of FEFFIT.INP !!!!!!!!!!!!!!!!!!!!!!!

!

! global parameters:

format = ascii ! format for all files in problem

all = no ! don't write all outputs

!

! variables:

guess s02 = 0.8

guess thetad = 200 ! Debye Temperature

guess e0_1 = 0.

set e0_2 = e0_1

set e0_3 = e0_1

guess alpha_0 = 0.001 ! constant lattice expansion

guess alpha_temp = 0.000 ! thermal expansion

! set parameters

set t010 = 10

set t050 = 50

set t150 = 150

!--

!

! data set #1

!

title = 3 data-set fit 10K Cu data

!

data = cu10k.dat ! input data file name

out = 10k.dat ! output file name

rmin = 1.75 rmax = 3.25 ! fit R-range

kmin = 2.0 kmax = 19.0 ! FFT parameters

dk = 2 kweight = 2 ! FFT parameters

! -

! Use the 0th path for the constant amplitude factor and e0.

s02 0 s02

e0 0 e0_1

delr 0 reff * (alpha_0 + t010 * alpha_temp / 1000)

sigma2 0 debye(t010, thetad)

!

path 1 feffcu01.dat

id 1 single scattering, R = 2.552, Degen = 12

!

!

feffit Simultaneous Fits of Multiple Data Sets 43

!

path 2 feffcu02.dat

id 2 single scattering, R = 3.609, Degen = 6

!

path 5 feffcu03.dat

id 5 double scattering, R = 3.828, Degen = 48

!

!--

!

next data set

!

!--

!

! data set #2

!

title = 3 data-set fit 50K Cu data

data = cu50k.dat ! input data file name

out = 50k.dat ! output file name

rmin = 1.75 rmax = 3.25 ! fit R-range

kmin = 2.0 kmax = 19.0 ! FFT parameters

dk = 2 kweight = 2 ! FFT parameters

! -

! Use the 0th path for the constant amplitude factor and e0.

s02 0 s02

e0 0 e0_2

delr 0 reff * (alpha_0 + t050 * alpha_temp / 1000)

sigma2 0 debye(t050, thetad)

!

path 1 feffcu01.dat

id 1 single scattering, R = 2.552, Degen = 12

!

path 2 feffcu02.dat

id 2 single scattering, R = 3.609, Degen = 6

!

path 5 feffcu03.dat

id 5 double scattering, R = 3.828, Degen = 48

!

!--

next data set

!--

!

! data set #3

!

title = 3 data-set fit 150K Cu data

data = cu150k.dat ! input data file name

out = 150k.dat ! output file name

rmin = 1.75 rmax = 3.25 ! fit R-range

kmin = 2.0 kmax = 19.0 ! FFT parameters

dk = 2 kweight = 2 ! FFT parameters

! -

!

feffit Simultaneous Fits of Multiple Data Sets 44

! Use the 0th path for the constant amplitude factor and e0.

s02 0 s02

e0 0 e0_3

delr 0 reff * (alpha_0 + t150 * alpha_temp / 1000.)

sigma2 0 debye(t150, thetad)

!

path 1 feffcu01.dat

id 1 single scattering, R = 2.552, Degen = 12

!

path 2 feffcu02.dat

id 2 single scattering, R = 3.609, Degen = 6

!

path 5 feffcu03.dat

id 5 double scattering, R = 3.828, Degen = 48

!!!!!!!!!!!!!!!!!!!!!!!!!! End of FEFFIT.INP !!!!!!!!!!!!!!!!!!!!!!!!

!

All the set and guess statements are put together, at the top of the �le. This is mostly to

keep things easier to decipher, but it also makes it easier to change the details of the model later

on. Also notice that I've used di�erent variables for each data set's E

0

, but I've used set to make

them all be the same number. This will make it easier to allow them each to
oat independently.

I've used reff to allow a simple lattice expansion by using the 0th path. I've also included

the possibility of a temperature dependent �R, but that I've set the thermal expansion coe�cient

to zero, at least for now. I'm also �tting the Debye Temperature.

If you run this feffit.inp �le as given, feffit.log should include these lines for the goodness

of �t, best-�t values, and estimated uncertainties in the best-�t values:

--

fit results, goodness of fit, and error analysis:

number of data sets = 3

independent points in data = 48

number of variables in fit = 5

degrees of freedom in fit = 43

chi-square = 1899.47558594

reduced chi-square = 44.17385101

feffit found the following values for the variables:

variable best fit value uncertainty initial guess

s02 = .91485572 .00145800 .80000001

thetad = 317.85824585 .47187614 200.00000000

e0_1 = .84959078 .01968322 .00000000

alpha_0 = -.00205574 .00003628 .00100000

alpha_temp = .00108976 .00032104 .00000000

As mentioned above, the value of the number of independent points in the data is somewhat

suspect, and therefore so is the number of degrees of freedom in the �t. Both are almost certainly

too high, but it's not clear how much too high. This makes a numerical assessment of the �t a bit

troubling. (It also means that �

2

�

= 44 is a lower bound.) But we can compare two di�erent models

feffit Simultaneous Fits of Multiple Data Sets 45

with a fair amount of con�dence by saying that any model that lowers �

2

�

is an improvement over

the other. This is true if we change what the variables are, or even if we change the number of

variables. Because �

2

�

is not quite correct, models which change �

2

�

by a only small amount (say, a

few percent) are not clearly improvements (we could at this point lapse into a wonderful discussion

of con�dence intervals and F -tests, but I'll spare you that nightmare).

So let's just pretend for the moment that �

2

�

is correct, and then use the

p

�

2

�

trick from

Chapter 5 to rescale the uncertainties in the variables. This will give

S

2

0

= 0.915 � 0.010 ,

�

D

= 318 � 3 ,

E

0

= 0.85 � 0.13 ,

�

0

= -0.0021 � 0.0002 ,

�

temp

= 0.0011 � 0.0021

From this we can conclude that �

temp

is consistent with zero, and that we could probably

improve �

2

�

by removing it from the �t. Another thing to notice is that the �tted Debye Temperature

is fairly well estimated, and that it agrees with the value given in standard textbooks (�

D

is

typically reported as 315K). While I fully acknowledge the criticism that Cu is an easy case, I want

to suggest that the concept for a Debye Temperature for a single bond may be useful in many

materials, not just monatomic metals. In fact the debye function could be used to give di�erent

Debye Temperatures to di�erent bonds in the same material. Using this technique may greatly

improve the understanding of the temperature dependence of many complex systems.

Here are some suggestions for other things to try with the Cu data. First, try �tting with

three di�erent E

0

's. This should not improve �

2

�

, but see for yourself. You can also remove �

temp

from the �t, setting it to either 0.0 or 0.0011.

Second, if you examine the feffit.log �le in some detail, you'll notice that the measurement

uncertainty is reported as being smaller for the 150K data than for the 10K and 50K data. This

is a peculiar artifact of the fact that the measurement uncertainty is estimated from the high-R

region, (15

�

A to 25

�

A), and that the low temperature Cu data is so good, and the Debye-Waller

Factors so small, that the signal is considerably larger than the noise in the high-R region. Happily

(or unhappily depending on your point of view), this will almost never happen for any real data.

You could set all the values of sigdat to be equal. This will give truly equal weight to each of

the temperatures. Using sigdat = 0.002 (as the measurement uncertainty in �(k)) seems like a

reasonable value. This will actually increase �

2

�

, but the �t results don't change very much.

As a �nal suggestion, include the rest of the 12 paths, including the multiple scattering ones,

and �t out to the fourth \shell". This will be a little bit of work, but will probably make you quite

familiar with all the details of �tting multiple data sets, and make you quite sick of Cu XAFS.

The FEFFIT document is finished.

Have a nice day.

