
The IFEFFIT Reference Guide

Matthew Newville
Consortium for Advanced Radiation Sources

University of Chicago, Chicago, IL

Version 1.2.7
Apr 07, 2005

CONTENTS i

Contents

1 Introduction 1

2 The Basics of IFEFFIT 2
2.1 Starting the program . 2
2.2 A Sample Run . 2
2.3 The show and print Commands . 5

3 Structure and Syntax of IFEFFIT 6
3.1 Commands . 6
3.2 Scalars, Arrays, and Strings . 7
3.3 Dynamic Variables: Set, Def, and Sync . 9
3.4 Fitting Variables: Guess . 10
3.5 Mathematical Syntax and Operations . 11

3.5.1 Common Math Operations . 11
3.5.2 Common Math Functions . 11
3.5.3 Array-Specific Operations . 13
3.5.4 Functions for Smoothing and Interpolating Data 15
3.5.5 XAFS-specific Functions for σ2 . 16

3.6 Commands, Arguments, and Keyword/Values 16
3.7 Getting information back from IFEFFIT . 19
3.8 Log Files, echo, show, and print . 21

4 Input and Output Files 23
4.1 Reading ASCII Column Files . 23
4.2 Sorting Data with read data() . 25
4.3 Writing ASCII Column Files . 26
4.4 IFEFFIT PAD Format for Save and Restore Files 26

5 Plotting with IFEFFIT 28
5.1 Specifying Data for Plotting . 28
5.2 Error Bars . 30
5.3 Colors, Line Styles, and Other Attributes . 31
5.4 Text Strings and Labels . 32
5.5 Markers and Arrows . 34
5.6 Cursor and Zooming . 35
5.7 Graphics Devices . 37

5.7.1 X-Windows Graphics . 37
5.7.2 GrWin Graphics for Win32 systems 38
5.7.3 Aquaterm Graphics for Mac OS X . 39
5.7.4 PostScript, GIF and PNG Graphics Files 39

6 Basic XAFS Data Processing 41
6.1 Data Manipulation and Corrections . 41
6.2 De-glitching . 41
6.3 Pre-Edge Subtraction, Finding E0, and Normalization 42
6.4 Simple XANES spectral analysis . 42
6.5 Post-Edge Background Subtraction: isolating χ(k) 43

CONTENTS ii

6.6 XAFS Fourier Transforms . 43
6.6.1 Forward Fourier Transforms with fftf() 43
6.6.2 BackTransforms with fftr() . 43
6.6.3 Phase-Corrected XAFS Fourier Transforms 43

7 Fitting XAFS Data with FEFF Calculations 44
7.1 Defining and Using Paths . 44
7.2 Creating χ(k) data with ff2chi . 46
7.3 Building a Fitting Model . 47
7.4 Executing a Fit . 47
7.5 Estimating the uncertainties in fitted variables 49
7.6 Goodness of Fit Parameters . 50
7.7 Post-Fitting Tasks . 50
7.8 Additional Fitting Features of feffit . 51

7.8.1 Including Background Refinement . 52
7.8.2 Constraints and Restraints in Fitting 52
7.8.3 Multiple-k-Weighting . 53
7.8.4 Simultaneous Fitting of Multiple Data Sets 53

8 Fitting Non-XAFS Data with IFEFFIT 56

9 Commands 58
9.1 bkg cl . 59
9.2 chi noise . 60
9.3 color . 61
9.4 comment . 61
9.5 correl . 62
9.6 cursor . 63
9.7 def . 64
9.8 echo . 65
9.9 erase . 66
9.10 exit . 66
9.11 f1f2 . 67
9.12 feffit . 68
9.13 ff2chi . 70
9.14 fftf . 71
9.15 fftr . 72
9.16 get path . 73
9.17 guess . 73
9.18 history . 74
9.19 linestyle . 75
9.20 load . 75
9.21 log . 76
9.22 macro . 76
9.23 minimize . 77
9.24 newplot . 77
9.25 path . 78
9.26 pause . 79

CONTENTS iii

9.27 plot . 80
9.28 plot arrow . 81
9.29 plot marker . 81
9.30 plot text . 82
9.31 pre edge . 83
9.32 print . 84
9.33 quit . 84
9.34 read data . 85
9.35 rename . 86
9.36 reset . 86
9.37 restore . 87
9.38 save . 87
9.39 set . 88
9.40 show . 89
9.41 spline . 91
9.42 sync . 92
9.43 unguess . 92
9.44 window . 93
9.45 write data . 94
9.46 zoom . 94

10 Macros in IFEFFIT 95

11 Scripting and Programming with IFEFFIT 98
11.1 Which language to use? . 98
11.2 Controlling screen outputs: The echo buffer 99
11.3 The Fortran interface to IFEFFIT . 99

11.3.1 integer function ifeffit() . 100
11.3.2 integer function iffputsca() . 101
11.3.3 integer function iffgetsca() . 101
11.3.4 integer function iffputarr() . 101
11.3.5 integer function iffgetarr() . 102
11.3.6 integer function iffputstr() . 102
11.3.7 integer function iffgetstr() . 102
11.3.8 integer function iffgetecho() . 103

11.4 The C interface to IFEFFIT . 103
11.4.1 function ifeffit() . 104
11.4.2 function iff put scalar() . 104
11.4.3 function iff get scalar() and iff scaval() 104
11.4.4 function put string() . 105
11.4.5 function get string() . 105
11.4.6 function put array() . 105
11.4.7 function get array() . 105
11.4.8 function get echo() . 106

11.5 The IFEFFIT Perl Module . 106
11.6 Using IFEFFIT from Python . 107
11.7 Using IFEFFIT from Tcl . 107

CONTENTS iv

A Glossary of Program Variables 109
A.1 Scalar Naming Conventions . 109
A.2 Array Naming Conventions . 111

B Fourier Transforms in IFEFFIT 112
B.1 Fourier transform Conventions . 112
B.2 Fourier transform window functions . 113

CONTENTS v

License

Copyright c©1997–2005 Matthew Newville, The University of Chicago
Copyright c©1992–1996 Matthew Newville, University of Washington

Permission to use and redistribute the source code or binary forms of this software and its
documentation, with or without modification is hereby granted provided that the above notice
of copyright, these terms of use, and the disclaimer of warranty below appear in the source code
and documentation, and that none of the names of The University of Chicago, The University
of Washington, or the authors appear in advertising or endorsement of works derived from this
software without specific prior written permission from all parties.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THIS SOFTWARE.

1 INTRODUCTION 1

1 Introduction

IFEFFIT is a program and programming library for analyzing x-ray absorption fine-structure
(XAFS) data. As its name may suggest, IFEFFIT1 gives an interactive method for fitting XAFS
data using calculations from FEFF, and is based on the fitting program FEFFIT of the UWXAFS3.0
Analysis Package. There have been significant additions to FEFFIT, and the user interface has
been completely rewritten.

IFEFFIT is a complete XAFS analysis package, allowing general data manipulation, analysis,
and plotting, as well as meeting the unique demands of analyzing XAFS data. For those of you
familiar with the UWXAFS3.0 Package, IFEFFIT combines the functionality of AUTOBK and
FEFFIT and adds many more features. A major goal of IFEFFIT is to make a graphical user
interface (GUI) for XAFS analysis, but IFEFFIT is not simply a GUI program by itself. It is,
instead, a command-based library that can be run either as a command-line program or called
from other programs, including both graphical and non-graphical interfaces. At this writing, an
enhanced command-line program named G.I.FEFFIT is distributed with IFEFFIT, and the GUI
programs ATHENA, ARTEMIS, TKATOMS, HEPHAESTUS, and SIXPACK make use of IFEFFIT.

This Reference Guide describes the commands and syntax of IFEFFIT, and is intended for
people who want direct access to the underlying ’IFEFFIT engine’, either directly from the
command-line program or through their analysis scripts. While the high-level GUI wrappers
such as ATHENA, ARTEMIS, and SIXPACK provide most of the functionality needed for XAFS
analysis, some sientists will appreciate a simple, scriptable command-based interface to a core
set of XAFS analysis routines. The commands and syntax described here are an attempt to
provide such an interface.

This guide starts with an example in Chapter 2 and then discusses the general syntax and
structure of the commands in Chapter 3. The next several chapters give more in-depth infor-
mation about input and output files, plotting, fitting XAFS data with FEFF calculations, and
fitting non-XAFS data to simple functions. Chapter 9 lists all the commands and their complete
syntax. Chapter 10 discusses writing simple macros for IFEFFIT and more complicated scripts
using scripting languages.

In addition to this Reference Guide , there is also The IFEFFIT Tutorial which gives a more
gentle introduction to IFEFFIT. More information about IFEFFIT, including installation instruc-
tions, further examples, an archived mailing list, and the other documention are available with
the source code and at the IFEFFIT web site: http://cars9.uchicago.edu/ifeffit/

Acknowledgements

IFEFFIT was written with helpful suggestions from Julie Cross, Bruce Ravel, and John Rehr.
More detailed and up to date acknowledgements can be found in the THANKS file distributed
with IFEFFIT.

1The name was originally intended to stand for INTERACTIVE FEFFIT, but I sort of like the simple self-declarative
nature of the name as well as the literary allusion to I, Claudius and I, Robot . It could also be interpreted as the
answer to the question, ”How do you analyze your XAFS data?”. It is in no way intended as a subliminal insertion
of FEFF into that other Chicago technological institute known to do some XAFS.

http://cars9.uchicago.edu/ifeffit/

2 THE BASICS OF IFEFFIT 2

2 The Basics of IFEFFIT

IFEFFIT is a command-based program. That is, you tell IFEFFIT to do something, it does that
and then waits for you to tell it what to do next. The commands that IFEFFIT accepts are sim-
ple statements (there are no loops or conditional statements) useful for data manipulation, and
especially for XAFS analysis. Most commands tell IFEFFIT to manipulate arrays of numerical
data. There are commands for reading arrays from files, writing arrays to files, plotting arrays,
doing simple mathematical manipulation of arrays, and more XAFS-specific commands such as
background-spline removal and Fourier transforms. It can also fit XAFS data using theoretical
standards from FEFF with complex modeling abilities and automated error analysis. This chap-
ter gives a quick overview of IFEFFIT with a simple annotated example. Much of this material
is also covered in The IFEFFIT Tutorial .

2.1 Starting the program

Typing ifeffit at the system command prompt will start the basic IFEFFIT command-line
program. You should get a set of messages and a command prompt that looks like this:

Ifeffit 1.2.7 Copyright (c) 2005 Matt Newville, Univ of Chicago
command-shell version 1.1 with GNU Readline

Ifeffit>

At this point, you’re ready to start typing IFEFFIT commands at the prompt. If you don’t get
such a prompt, the installation on your machine is probably corrupted. Detailed installation
instructions are available with the IFEFFIT distribution.

2.2 A Sample Run

We start with a fairly complete example (see the tutorial for a more gentle introduction). Let’s
say you have some raw data from a beamline in a plain-text column format, and you want to
convert it to µ(E), do a background subtraction, and then a Fourier Transform to see what
the data looks like in R-space. Though a very practical request, it’s really quite a bit of data
processing, so this is a fairly intense example. Here’s what the session might look like:

Ifeffit> read_data(file=Cu.dat, type=raw, group= cu)
Ifeffit> cu.energy = cu.1 * 1000.0
Ifeffit> cu.xmu = ln(cu.2 / cu.3)
Ifeffit> spline(energy = cu.energy, xmu = cu.xmu,
Ifeffit> rbkg=1.1, kweight=1., kmin=0)
Ifeffit> plot(cu.energy, cu.xmu)
Ifeffit> plot(cu.energy, cu.bkg, xmin=8850, xmax=9300,
Ifeffit> color=red)
Ifeffit> kweight = 2.0, cu.chi_kw = cu.chi * cu.kˆkweight
Ifeffit> newplot(cu.k, cu.chi_kw)
Ifeffit> fftf(real = cu.chi, kmin = 2.0, kmax = 13.0,
Ifeffit> dk = 1.0, kweight=2)
Ifeffit> newplot(cu.r, cu.chir_mag, xmax=8)
Ifeffit> $title1 = "Test: writing out k, chi, chi*k"
Ifeffit> $title2 = " data from Cu.dat, rbkg = 1.0"
Ifeffit> write_data(file = Out.chi, cu.k, cu.chi,
Ifeffit> cu.chi_kw, $title1, $title2)

2 THE BASICS OF IFEFFIT 3

One important aspect of IFEFFIT is that you can save commands into a file and execute all
commands in that file at one time. By saving the above commands into the file process.iff,
we could simply type load process.iff at the IFEFFIT command line. These two methods
of running these commands are completely equivalent.

We’ll now go through each of these lines in detail. At times there may be too much detail
here. If so, please go through the The IFEFFIT Tutorial and be patient.

Ifeffit> read_data(file=Cu.dat, type=raw, group= cu)

This command reads in data arrays from the ASCII column file Cu.dat. The arguments
type=raw and group=cu help read data()() name the arrays it reads in. Because
arrays are often read in and processed together, it is convenient to give them names that are
related. Arrays names always have two parts – a prefix and suffix, with a dot ’.’ in between.
The prefix gives the group name, and the suffix explains what the data contains. Here, cu is
used as the group name (prefix). The type raw is the simplest type, so the suffixes will just
be the column index. To make a long story short, we just read in the arrays cu.1, cu.2, and
cu.3.

Ifeffit> cu.energy = cu.1 * 1000.
Ifeffit> cu.xmu = ln(cu.2 / cu.3)

Presumably, we know what the contents of our data file. For this Cu.dat file, the column
contained energy in keV, the second contained I0 and the third I , for absorption data measured
in transmission. There might have been more columns in the file, but this is all we need at this
point. IFEFFIT prefers to think about energy in eV not keV, so we make an array cu.energy
that has energy in eV, and then we calculate µ(E) and call that cu.xmu. Note that the math
here is done on all elements of the array.

Ifeffit> spline(energy = cu.energy, xmu = cu.xmu,
Ifeffit> rbkg=1.1,kweight=1.,kmin=0)

This computes the background spline µ0(E) for our µ(E) using the AUTOBK algorithm. The
argument energy = cu.energy names the array to use as the energy values, and xmu =
cu.xmu names the µ(E) array. rbkg=1.1 sets the value of Rbkg, while kweight=1. sets
the k-weighting, and kmin=0 sets the value of kmin.

Like many other commands, spline() uses, modifies, and (if necessary) creates several
arrays and scalars. The complete list of what spline() uses is listed in section 9.41. For now
a partial list will do: spline() sets the arrays cu.bkg to contain µ0(E), cu.k to contain
the k values, and cu.chi to contain χ(k). Several scalar values (including rbkg, kweight,
kmin, and e0) are also set by spline(). You can see the values of these variables with the
show() command – try show(e0, kmax) for example.

Ifeffit> plot(cu.energy, cu.xmu)

This plots µ(E). That is a plot window should appear and a trace of µ(E) should be drawn
on it. If this does not happen, please consult the installation instructions. The plot() com-
mand has many optional arguments, but here we’re just giving the array names for the ordinate
cu.energy and the abscissa cu.xmu.

2 THE BASICS OF IFEFFIT 4

Ifeffit> plot(cu.energy, cu.bkg, xmin= 8850, xmax= 9300,
Ifeffit> color=red)

This adds a plot of µ0(E) to the previous plot. We specify the x range of the plot with xmin
= 8850, xmax = 9300 to look at just the near-edge region, and explicitly give the color
to use for µ0(E). Note that overplotting is the default behavior. See section 9.27 for all the
plotting options, and chapter 5 for even more information about plotting with IFEFFIT.

Ifeffit> kweight = 2.0, cu.chi_kw = cu.chi * cu.kˆkweight

This sets the value of kweight and uses the new value to create the array cu.chi kw which
contains k2χ(k). Note that multiple “set variable” commands were put on a single line.

Ifeffit> newplot(cu.k, cu.chi_kw)

This plots the k-weighted χ(k) that we just calculated. newplot() is a variation of plot()
command that reinitializes the plot, so that it won’t be plotted over the current window (which
was still showing µ(E) and µ0(E)).

Ifeffit> fftf(real = cu.chi, kmin = 2.0, kmax = 13.0,
Ifeffit> dk = 1.0, kweight=2)

This does the forward XAFS Fourier transform of χ(k). The argument real = cu.chi tells
fftf() to use cu.chi (which is the un-k-weighted χ(k) from spline()) as the real part
of the function to Fourier transform. We could have said imag = cu.chi to use χ(k) as
the imaginary part. This is, to some extent, a matter of convention – see XAFS Analysis with
IFEFFIT for more details.

The Fourier transform window was specified with the parameters kmin, kmax, and dk.
The k-weight parameter for the Fourier transform will be read from the variable kweight,
which we just defined as 2. fftf() creates arrays cu.r forR, and cu.chir re, cu.chir im,
and cu.chir mag for the real part, imaginary part, and magnitude of χ̃(R), among other
things.

Ifeffit> newplot(cu.r, cu.chir_mag, xmax = 8)

Now we plot |χ(R)|, explicitly limiting theR-range to 8Å. By default, theR-based arrays from
fftf() will extend to 10Å.

Ifeffit> $title1 = "Test: writing out k, chi, chi*k"
Ifeffit> $title2 = " data from Cu.dat, rbkg = 1.1"

Here we define a pair of text string variables, which always have names starting with a dollar
sign. These are useful for doing things like

Ifeffit> write_data(file = out.chi, cu.k, cu.chi,
Ifeffit> cu.chi_kw, $title1, $title2,e0,rbkg)

in which we save the χ(k) and k-weighted χ(k) data to the file out.chi. The rest of the
arguments list the arrays, text strings, and scalars to write to the output file. Text strings will be
written first, then the scalars, and finally the data arrays will be written, all given in the order
listed. This ends the annotated example.

2 THE BASICS OF IFEFFIT 5

2.3 The show and print Commands

Two very important commands that you definitely want to know about were left out of the above
example. These are the show() and print() commands, which will write out information
about Program Variables, including their values. The show() command takes a simple list of
program variables, like this:

Ifeffit> show e0, kmin, $title1, cu.chi

and will print something like

e0 = 8982.315
kmin = 2.000000
$title1 = Test: writing out k, chi, chi*k
cu.chi = 302 pts [-0.3232080 : 1.233829]

show() doesn’t print out entire arrays but gives just enough information (the number of points,
and the minimum and maximum value) to convince you that an array exists. The show()
command can also be used to show all current scalars, arrays, and strings. You can read more
about the show() command in section 9.40.

Whereas the show() command will only report about existing variables, and will not do
any processing, the print() command is a bit more literal, printing out the values of variables
or expressions. That is, print(e0) will just print the numerical value of e0 to the screen:

Ifeffit> print e0
8982.315

Ifeffit> print "sqrt(25) + 1.001"
6.00100

Note that in the last example, the math expression was enclosed in double quotes. This (or
equivalently, enclosing braces “{}”) tells IFEFFIT to evaluate the expression, instead of printing
it literally, and tells IFEFFIT where the expression ends. Using single quotes would print the
expression literally:

Ifeffit> print ’sqrt(25) + 1.001 = ’, "sqrt(25) + 1.001"
sqrt(25) + 1.001 = 6.00100

You can also print() out several expressions at once:

Ifeffit> print "sqrt(25) + 1.001", "pi / 2"
6.001000 1.570796

Using print() for arrays (or an expression that gives an array) will print all the values of the
arrays:

Ifeffit> print indarr(4)/5
0.2000000 0.4000000 0.6000000 0.8000000

Section 3.7 gives a more complete description of all the ways of getting information back
from IFEFFIT. We’ll come back to show() and print() in section 3.8, where the ability to
change where these outputs are printed will be discussed.

At this point, you may find it useful to repeat the above example session mixing in show()
or print() commands after every line, and plotting some of the other arrays. That should
give you enough of a feel for IFEFFIT to be able to use it for simple data processing and allow
you to use the rest of this document as a reference guide.

3 STRUCTURE AND SYNTAX OF IFEFFIT 6

3 Structure and Syntax of IFEFFIT

This chapter takes an in-depth view at IFEFFIT’s data and syntax. It is more formal and in-depth
than the previous chapter, but most of the topics here were touched on there. For those of you
with some programming experience or some familiarity with FEFFIT, nothing in this chapter
should be too confusing. In some sense, IFEFFIT is a language for data analysis and this chapter
describes the IFEFFIT language. As a programming languages, IFEFFIT is pretty weak, missing
many key features. Since IFEFFIT is really XAFS data analysis program, I’ll try not to make
this sound like a programming text, and keep the examples in the previous chapter close at hand
throughout this chapter.

IFEFFIT keeps a common storage areas for all its data, and gives you access to this data
through named variables. You are allowed to pick your own variable names for your data and
create and do simple algebraic manipulation on your data. In the previous chapter we saw an
example of this when we read in data from a file to variables with names corresponding to the
column labels in the file, and then constructed µ(E) ourselves by simple manipulation of this
data.

3.1 Commands

IFEFFIT is a command-based program, and every operation you type at the command-line or
send to IFEFFIT through a script is a interpreted as a command. Most IFEFFIT commands have
syntax like this:

Ifeffit> command(argument1, argument2, ...)
Ifeffit> command(keyword= value, keyword= value,

keyword= value, ...).

That is, there is a unique command name that is given first, then a set of arguments separated by
commas. Most arguments are keyword/value pairs, which have the form keyword= value,
where keyword is a predefined string and value is the value you wish to assign to it. Some
commands use arguments that are not keyword/value pairs, but have some or all of their argu-
ments be lists of strings or program variables, but the majority are keyword/value pairs. We’ll
come back to these topics in section 3.6.

The enclosing parentheses for commands are optional, so that

Ifeffit> command keyword= value, keyword= value

is allowed. If you use an open paren “(”, you must match it with a close paren “)”, even if that
means the command extends over several lines. That allows commands to be extended over
several lines, which will be necessary in some cases. Commands are not processed until they
have matching open and closing parentheses. When using the command-line program, you’ll
get a prompt of ...> instead of the usual Ifeffit> when a command is partially completed.

As we will saw in the example in the previous chapter, and as we will see in the next
few sections, a significant amount of the command-line processing you will do with IFEFFIT

is to create and define Program Variables from your data. These procedures are done with the
commands def() and set()which differ slightly but which both have the effect of specifying
a value for a Program Variable. That is

Ifeffit> def(kweight = 2.0, kmin = 2.50, kmax = 15.4)

3 STRUCTURE AND SYNTAX OF IFEFFIT 7

will create and define (or redefine, if they already existed) values for the Program Variable
kweight, kmin, and kmax.

But, as you have probably noticed, we didn’t use the def() or set() command in the
previous example, and simply said

Ifeffit> cu.energy = cu.1 * 1000.0
Ifeffit> cu.xmu = ln(cu.2 / cu.3)

This is because the default command it def(). That is, if the first word on the command line is
not a known command or macro (which we’ll get to eventually), the def() command is used.

An important consequence of this is that when you do really want to use the set() com-
mand, you’ll need to specify it explicitly. We’ll come back to this topic in section 3.3. For
know, you can simply remember that

The default command is def().

3.2 Scalars, Arrays, and Strings

IFEFFIT has three types of variables: numeric scalars, numeric arrays, and text strings. I’ll
call all of these “Program Variables” throughout this Reference Manual to mean all the named
quantities that IFEFFIT knows about – you shouldn’t confuse “Program Variables” with values
that are adjusted in a fit which I’ll call “Fitting Variables” (see section 3.4) when there’s room for
confusion. If you have some programming experience, IFEFFIT’s data types should be familiar:
numeric scalars are real numbers, numeric arrays are arrays of real numbers, and text strings are
sequences of characters. If that you’re not familiar with the ways computers store data, numeric
scalars contain a single number, numeric arrays contain a set of numbers that is referred to as
a whole, and text strings contain a single line of text. IFEFFIT uses double precision (64bit)
floating point numbers for all it’s numeric values, and does not have a separate integer type.
Due to implementation limitations, the maximum number of elements in an array is 16384, and
the maximum length of text strings is 128 characters. These limits are set when IFEFFIT is built.
In principle, these limits could be changed, but I wouldn’t guarantee it to be easy to do.

All Program Variables are named, and are global in the sense that every part of IFEFFIT

sees the same variables using the same names. As you use IFEFFIT, you will define variables
for your data, and tell the commands which data to use by name. In turn, IFEFFIT’s commands
will access variables by name, and may even create named variables or overwrite the values
of variables already defined. That is, the variables you create and the ones that the IFEFFIT

commands use will live in the same “name-space”. This gives you and IFEFFIT’s commands
equal access to the variables. Thought this should definitely be seen as a strength, it also means
that you should use some care in naming your variables. Normally, there’s not much too worry
about, as long as you avoid things like trying to store the value ofE0 in a variable named kmin.
In general, IFEFFIT expects named variables to store quantities it expects. A glossary of the
names and meanings IFEFFIT expects is listed at the end of Appendix A.

To create a variable, you would say something like phi = (1 + sqrt(5))/2. To set
the value of kmin (used by several commands for Fourier transforms), you might say kmin =
1.00. You can also use any variable to assign to other variables. If you were so inclined,
you could have said something like kmin = phi*(phi-1), or possibly something along
the lines of x= exp(0), kmin = 4*atan(x)/pi is more of your idea of a good time.
Actually, these aren’t exactly equivalent ways to define variables, but we’ll get to that shortly.

IFEFFIT uses a simple and strict naming convention for Program Variables, and distinguishes
the 3 variable types by name. This means that everyone (and every command) can tell the

3 STRUCTURE AND SYNTAX OF IFEFFIT 8

variable type from its name alone. The convention may be a somewhat unusual, but shouldn’t
be very difficult to get used to. The rules are:

1. Text strings have names that begin with a dollar sign ($). Names for numeric scalars and
arrays do not begin with a dollar sign.

2. Arrays have names that contain one dot (“.”), with at least one character before and after
the dot. This gives arrays a prefix and suffix, which leads to a convention: the prefix is
associated with the group of the array, and the suffix describes the contents of the array.
Neither scalars nor text strings may have a dot in their name.

3. Scalars, the prefix and suffix of arrays, and the characters in the name of a text string after
the dollar sign can contain only letters, numbers, ’&’, ’?’, ’:’, and ‘ ’ (underscore). They
are limited to 64 characters.

4. Scalars and array prefixes names cannot begin with a numeral. Text strings and the suf-
fixes of array names can begin with a numeral.

5. Variable names are not case-sensitive.

Some examples of the naming convention: ‘$file’ and ‘$plot color’ are text strings. So is ‘$20’,
but ‘$19.95’ is not allowed. ‘$1’ is a valid name for a text string, but IFEFFIT uses ‘$1’ . . . ‘$9’
as special variables for macro arguments (see chapter 10) and it will likely cause confusion if
you actually try to use such variable names, especially in macros. ‘$test.1’ is not allowed, nor
is ‘dec$window’ (it contains a ‘$’ in the middle of it’s name, and might inspire a wistful pining
for VMS). Array names look like ‘my.energy’ and ‘data.chi’. ‘X.11’ is allowed, and as we saw
in the previous chapter, the common convention for how to name data from column files, but
‘8.3’ is not allowed as a variable (because it’s a plain number). Typical scalar names are ‘E0’
and ‘edge step’. ‘10th var’ is not allowed, since it starts with a numeral. Neither ‘data-10’ nor
‘the end.’ are allowed (the former contains a minus sign, the latter has a dangling dot ‘.’).

‘&’ is allowed in variable names, and by convention, several built-in “system” scalar vari-
ables begin with ‘&’, notably &print level and &screen echo. The characters ’?’, ’ ’,
and ’:’ are also allowed in variable names, and are not currently given any special meaning.
Speaking of special characters, ‘@’ is not allowed in any variable names, but is used with
the show() command as a primitive wildcard or glob character. In addition, ‘*’ is used in
the write data() command as a glob character, to match multiple string names, but isn’t
allowed in real string names. We’ll come back to these glob characters later.

The naming convention gives a clear distinction between the three types, making life easier
on all of us. Text strings will likely be used less than numbers, so the extra $ (with the mnemon-
ics of “string” for English speakers) was chosen for text strings. The ‘.’ in an array name
suggests that they are associated with files (or data structures for the programmers out there). It
also gives a prefix and a suffix to the array names, which gives a handy convention for grouping
them together. Though this convention can be disregarded, it is generally a good idea to use the
prefix to associate related arrays (say, from the same file, or along a single line of analysis), and
to use the suffix to distinguish the contents of the array. This allows read data() to assign
decent array names based either on the column labels in the file or on the type and group
keywords. It also means you can have arrays named Cu1.xmu and Cu2.xmu, containing
µ(E) data from two different files. A spline() command with Cu1.xmu would generate
Cu1.bkg, etc, while a spline() on Cu2.xmu would generate Cu2.bkg, etc.

3 STRUCTURE AND SYNTAX OF IFEFFIT 9

One more thing on naming conventions: though we haven’t discussed macros much yet,
macros are named sequences of IFEFFIT commands. They share the same naming rules as
plain scalars. In fact, commands also share the same naming rules as plain scalars. To avoid
confusion, you cannot assign a scalar a name of an existing macro or command. By the same
token, you won’t be able to create a macro with the name of a known scalar or command.

Before leaving this section I should admit that there actually is some data that you do not
have direct access to through the Program Variables. The most notable example of data that
is not available through Program Variables is the complete set of information for an EXAFS
Path. The hiding of this data was a difficult design decision, but I felt it provided a simpler
and cleaner interface 2, and one that was more amenable to expanding. For the most part, you
probably won’t even notice that this path data is missing. Besides, almost all of the information
about a Path can be converted into Program Variables.

3.3 Dynamic Variables: Set, Def, and Sync

As seen in the previous chapter, you can define your own variables in IFEFFIT simply like this:

Ifeffit> a = 1, b = 3
Ifeffit> c = (a + b)/2

When you say something like this, it’s pretty clear that the value of c should be 2. But a
complication can arise when you redefine a variable. For example, if you now say

Ifeffit> b = 5

Should c be 2 or 3? There are two slightly separate parts to this question, and both are important
for understanding how IFEFFIT works: 1) should IFEFFIT store the value or the formula for a
defined variable? and 2) if the formula is stored, how often should the value be re-evaluated?

The answer to question 1 is that IFEFFIT can store either the value or the formula for a
variable. It stores the formula by default, which means that c will be 3. If you don’t want the
formula stored, but want the current value of an expression at the time of definition, use set()
command should be used:

Ifeffit> set (c = (a + b)/2)

With set(), the formula is not stored, so no matter what values a or b are changed to, c will
be 2.

This “store the formula” aspect of IFEFFIT is fairly unusual in data-processing programs
and languages. IFEFFIT is primarily designed for complex data modeling, and this approach is
extremely useful for setting up complex models for fitting.

Well, that brings us to the second question: if the formula is stored, when will c be re-
evaluated? Normally, IFEFFIT automatically re-evaluates the variables for you. As you might
imagine, if lots of interrelated formulas are stored, re-evaluating them to make sure they’re all
consistent can turn become complicated and inefficient. IFEFFIT tries to hide all this from you,

2If you have some programming experience, it might help to think of Paths as Objects: A complex data structure
which you cannot access directly, but only through the supplied methods. In this view, path() defines and creates a
path object, and the commands show(), ff2chi() and feffit(), the functions debye() and eins(), and
special variables like reff and degen access this data.

3 STRUCTURE AND SYNTAX OF IFEFFIT 10

and isn’t as inefficient as you might guess3. It’s possible that IFEFFIT can get confused about
variables and their interdependencies. You can force the variables to be re-evaluated with the
sync() command. sync() checks the dependencies of each variable (both scalars and ar-
rays), re-orders the list of variables, and makes sure that the values are up-to-date. sync()
is done internally at the beginning of many IFEFFIT commands. These are listed in chap-
ter 9, and include def(), set(), plot(), write data(), and the fitting commands
(minimize() and feffit()). You should never need to use sync() explicitly, but it’s
there if you think you need it.

You can see all this in action with show @scalars and show @arrays, which list
variable names, values, and formulas for scalars and arrays. In fact, the variable list shown
is as re-ordered by sync() to reflect the order of inter-dependencies of variables, so that the
variables can be correctly evaluated in one pass. Trivial formulas like ‘x = 1 + 1’ are not
stored, since IFEFFIT can easily tell that the value of x won’t change.

Before moving on, let me try to clarify the distinction between set() and def() one
more time. Everything you type at the command line is interpreted as a command. The default
command is def(). When you type a = 1, b = 3, IFEFFIT first looks at a to see if it’s a
command. Recognizing that it is not, IFEFFIT translates the line to def(a = 1, b = 3).
This has the consequences that you don’t really need to type def(), though keeping in mind
that it’s really there all the time is generally a good idea.

3.4 Fitting Variables: Guess

In the previous section, we discussed two varieties of scalars: those that are def()ined as
expressions of other scalars and arrays, and those that are set() to a static value. There is
actually a third category: fitting variables. These are a lot like static (set()) scalars except that
their values will be changed by the fitting commands minimize() and feffit(). Fitting
variables are a little special in that they keep track of their uncertainties and correlations with
other variables as well as their value. To define a fitting variable, and to give the initial value for
it, you use the guess() command, which has a syntax like this:

Ifeffit> guess my_age = 19

There are no fitting arrays or fitting strings.
It should be clear that many commands alter the values of scalars. For example, pre edge()

can alter the value of e0. But in this case e0 is not considered a fitting variable in pre edge(),
because it is not defined as a guess()ed scalar. You may, however, define a fitting variable
e0 when doing fitting of the XAFS with the feffit() command. That is, a scalar is a fitting
variable if it was defined with guess(), not just if its value changes.

After a fit is executed (either with the feffit() or minimize() command), an estimate
of the uncertainties in the fitted variables will be determined and stored in scalar variable. The
variable will be named with a delta pre-pended to each variable name: delta air lines
will contain the uncertainty in air lines, and so on.

Finally, there is an unguess() command that will turn all fitting variables into regular
scalars, with their current value. This effectively does a set() on all variables, and can be
very convenient when changing fitting models, as unused variables can make it impossible to

3That is, it’s not storing the text string for the formulas and re-using them – that would be far too inefficient for
data modeling. Instead, IFEFFIT parses and converts the formula into a sort of ‘byte-code’ for easy re-evaluation.
The sync() command inspects this ‘byte-code’ for each formula to determine the simplest order of re-evaluation
of the variables so that all the inter-dependencies are satisfied

3 STRUCTURE AND SYNTAX OF IFEFFIT 11

determine error bars. For complicated macros, scripts, or programs, it is usually a good idea
to execute an unguess() before executing your guess() commands to clear any unwanted
variables.

3.5 Mathematical Syntax and Operations

As mentioned in the previous section, the definitions of numeric scalars and arrays are inter-
preted as mathematical expressions. These are simple algebraic expressions, using numbers,
named variables (scalars and arrays), mathematical operations, and intrinsic functions. The
syntax is fairly standard, and the case of the operators and variable names is ignored.

When arrays are used in an expression, the result will typically be an array, with each
element of the array being operated on. For example,

Ifeffit> my.y = sin(my.x)

will define my.y as an array of the same size as my.x, with the sine operation done on each
element of the array. In addition, arrays can be built with IFEFFIT using functions such as
range,

Ifeffit> my.x = range(1,4,1)
Ifeffit> print my.x
1.0000 2.0000 3.0000 4.0000

Several more functions for creating and manipulating array data, as well as details of built-in
math functions are given in the following sections.

3.5.1 Common Math Operations

The supported math operations include *, /, +, -, **, and ˆ , with exponentiation
done with either ** or ˆ . Standard math precedence (quantities inside parentheses first, from
inner to outer parentheses, then ** and ˆ , followed by * and /, and then + and -) is obeyed4,
but parentheses are encouraged. If syntax errors like out-of-range arguments or nonsense math
operations are give, an error message will be printed, and the value will be zero.

There are two built-in constants, whose values you won’t be able to change: pi gives
the value of π; 3.1415926. . . , and etok gives the value of 2me/h̄

2 in units of 1/eVÅ2;
0.2624683. . . . The utility of π should be obvious. For XAFS, converting photo-electron en-
ergy E in eV to wavenumber k in Å−1 can be done as k = sqrt(E * etok). This line
just keeps

3.5.2 Common Math Functions

The supported math functions are listed in Table 1, Table 2, and Table 3. You’ll find all the usual
trigonometric functions there, as well as a few other special functions. Note that both log and
ln give the natural logarithm, base e. All trigonometric functions use radians.

While most functions listed in Tables 1 should be familiar, there are a few here that may
need further explanation. Gamma, log-gamma, and error function are supported as gamma(),
loggamma(), and erf(), following the usual description found in standard mathematical
handbooks.

4Actually, IFEFFIT violates standard math precedence by incorrectly associating exponentiation from left to right
instead of right to left. That is, it evaluates 4**3**2 as 4096 (= (4**3)**2) instead of the correct value of 262144
(= 4**(3**2)). Fixing this is not high on the priority list.

3 STRUCTURE AND SYNTAX OF IFEFFIT 12

Table 1: Table of Mathematical Functions, Part I (common functions). All function arguments
can be expressions themselves. The listing below indicates the expected type for all these
functions as scalar. When applied to arrays, these functions return an array of values with the
function applied to each element of the argument.

Function Prototype Description

y = abs(x) absolute value
y = min(x1,x2) smaller of two values
y = max(x1,x2) larger of two values
y = sign(x) sign (1.0 or -1.0) of x
y = sqrt(x) square root
y = exp(x) exponential, base e
y = log(x) logarithm, base e
y = ln(x) logarithm, base e
y = log10(x) logarithm, base 10
y = sin(x) sine
y = cos(x) cosine
y = tan(x) tangent
y = asin(x) arc-sine
y = acos(x) arc-cosine
y = atan(x) arc-tangent
y = sinh(x) hyperbolic sine
y = cosh(x) hyperbolic cosine
y = tanh(x) hyperbolic tangent
y = coth(x) hyperbolic cotangent
y = gamma(x) gamma function
y = loggamma(x) log of gamma function
y = erf(x) error function
y = gauss(x,x0,sigma) Gaussian function
y = loren(x,x0,sigma) Lorentzian function
y = pvoight(x,x0,fwhm,eta) pseudo-Voight function

The functions gauss(), loren(), and pvoight() are available for constructing
typical lineshapes to model data, which are especially convenient when used the general least-
squares minimization command minimize(). The functions are most likely used with the
first argument being an array, though this is not required. The versions here are properly nor-
malized so that they integrate to 1. For example, y = gauss(x,x0,sigma) gives

y = G(x, x0, σ) =
1

σ
√

2π
exp[−(x− x0)2/2σ2)] (1)

where x is x, x0 is x0, and σ is sigma. Similarly, y = loren(x,x0,sigma) gives

y = L(x, x0, σ) =
σ/2π

(x− x0)2 + (σ/2)2
(2)

The pseudo-Voight function is a linear combination of a Gaussian and Lorentzian function
with the same full-width-at-half-maximum (FWHM), often used to describe real diffraction

3 STRUCTURE AND SYNTAX OF IFEFFIT 13

Table 2: Table of Mathematical Functions, Part II (array-specific functions). All function ar-
guments can be expressions themselves. The listing below indicates the expected type (x for
scalar, my.x for array) for arguments and results. Functions with array arguments return a
scalar value (npts() . . .vprod(), nofx()) will work on scalar arguments, with trivial re-
sults. Functions with a scalar arguments that return arrays (i.e., indarr . . .range) will use
the first element of an array argument as the scalar used.

Function Prototype Description

y = floor(my.a) smallest element of array
y = ceil(my.a) largest element of array
y = vsum(my.a) sum of all elements of array
y = vprod(my.a) product of all elements of array
y = npts(my.a) number of elements in array

my.y = indarr(n) generate array 1, 2, . . . , n
my.y = ones(n) generate array of n ones
my.y = zeros(n) generate array of n zeros
my.y = range(start,stop,step) generate array over a given range

my.y = join(my.x1,my.x2) concatenate 2 arrays
my.y = slice(my.x,n1,n2) generate sub-array my.x[n1:n2]
n = nofx(my.x,x) index of my.x with value closest to x

lineshapes. Since the same FWHM for the Lorentzian and Gaussian functions imply different
values of σ, the result is that y = pvoight(x,x0,sigma) gives

y = ηL(x, x0, σ) + (1− η)G(x, x0, σg) (3)

where the specified FWHM = σ and σg = σ/2
√

2 ln(2).

3.5.3 Array-Specific Operations

As mentioned above, when arrays are used in expression, the result is usually an array. In addi-
tion, the functions listed in Tables 2 are designed especially to work with arrays, and may either
create arrays given a few scalars or return a scalar given an array expressions. For example, the
functions ceil(), floor(), vsum(), vprod(), and npts() each return a scalar
given an array argument. ceil() and floor() give the maximum and minimum element of
the array, respectively. vsum() returns the sum of all elements of an array, vprod() returns
the product of all the elements, and npts() returns the number of points in an array. As with
all functions, these can be used on expressions as well as on named arrays. Note that ceil()
is different from max(), as ceil() returns the single largest value of an array, while max()
returns the larger of two values. The functions floor() and min() are not the same.

As mentioned earlier, there are a number of functions to help build arrays from scratch.
The function indarr() takes one scalar argument as an array length and fills the array with
integers: 1, 2, 3, For example

Ifeffit> my.index = indarr(10)

3 STRUCTURE AND SYNTAX OF IFEFFIT 14

will fill my.index be the array (1, 2, 3, . . . , 10). The functions ones() and zeros()
create arrays of a specified length, only the created arrays will have all elements set to 1 and 0,
respectively. Of course, these functions can be used anywhere in a math expression:

Ifeffit> my.xval = 1 + indarr(max(x1,1)) /100

It is an error to give these functions an argument that evaluates to less than 1. If the argument
to one of these three functions is itself an array, the first element will be used as the dimension,
and the rest of the array will be ignored.

The function range() is a more general function for creating evenly spaced arrays. It
takes three arguments: a starting value, a stopping value, and a step size for the array. That is

Ifeffit> my.x = range(3,10,1)

will create the array (3, 4, 5, . . . 10), and

Ifeffit> my.x = range(2,4,0.1)

will create an array with values (2,2.1,2.2,. . . , 3.8,4.0). If the range is not an exact multiple of
the step size, range() will make sure all elements of the array are within the range specified
by the start and stop values. Negative step sizes are allowed, but should be used with care.

Arrays can also be built up and broken apart using the join(), slice(), and nofx()
functions. The join() function concatenates two arrays, for example

Ifeffit> my.x1 = indarr(3)
Ifeffit> my.x2 = range(10,16,1.5)
Ifeffit> my.x = join(my.x1,my.x2)
Ifeffit> print my.x
1.0000 2.0000 3.0000 10.0000 11.5000 13.0000 14.50000 16.0000

The slice() function will select a sub-array, or portion of the array defined by indices for
the first and last point desired. Counting of indices begins with 1, so that

Ifeffit> my.x1 = indarr(10)
Ifeffit> my.x2 = slice(my.x1,3,6)
Ifeffit> print my.x2
3.0000 4.0000 5.000 6.0000

The function nofx() will return the index of an array nearest to a given scalar value:

Ifeffit> my.x1 = range(90,180,9)
Ifeffit> nx = nofx(my.x1,126)
Ifeffit> print my.x1
90.0000 99.0000 108.000 117.000 126.000 135.000

144.000 153.000 162.000 171.000 180.000
Ifeffit> print nx

5.0000

If multiple values in the array match (or are equally close to) the requested scalar, the first
occurrence of “the closest value” will be reported.

3 STRUCTURE AND SYNTAX OF IFEFFIT 15

Table 3: Table of Mathematical Functions, Part III (special functions). See notes for Tables 1
and 2 for explanation of arguments and text for explanation of the functions themselves.

Function Prototype Description

my.y = deriv(my.x) finite-difference derivative of array
my.y = smooth(my.x) three-point smoothing of array
my.y = interp(old.x,old.y,my.x) linear interpolation of arrays
my.y = qinterp(old.x,old.y,my.x) quadratic interpolation of arrays
my.y = splint(old.x,old.y,my.x) spline interpolation of arrays
my.y = rebin(old.x,old.y,my.x) re-binning interpolation of arrays

my.z = lconvolve(my.x,my.y,sigma) convolve data with Lorentzian
my.z = gconvolve(my.x,my.y,sigma) convolve data with Gaussian

y = debye(temp,theta) σ2 in Debye approximation
y = eins(temp,theta) σ2 in Einstein approximation

3.5.4 Functions for Smoothing and Interpolating Data

The functions listed in Table 3 do need some more detailed explanation. Many of these functions
are for smoothing and interpolating data. The deriv() function returns the derivative (in the
finite-difference sense) of its argument (a single array). The smooth() function returns a
three-point smoothing of its array argument. There are three functions for interpolation of
arrays, linterp() qinterp(), do linear and quadratic interpolation, respectively, while
splint() does a cubic spline interpolation. These routines map an x-y pair onto another set
of x-values, with syntax

Ifeffit> new.y = linterp(old.x, old.y, new.x)
Ifeffit> new.y = qinterp(old.x, old.y, new.x)
Ifeffit> new.y = splint(old.x, old.y, new.x)

It may be a bit confusing to remember the order of arguments, but is important to keep straight.
The idea is that you’re moving old.y from old.x onto new.x.

The rebin() function works in a similar manner to these interpolation schemes, but will
average input data onto the output x array. That is, if the input x-array is finer than the output x-
ray (over any portion of the two arrays), the corresponding y-values will be averaged where it is
appropriate to do so. This is especially useful for finely-spaced data, as QEXAFS or continuous
scan data. Note that the spline() and bkg cl() commands use this algorithm for all XAFS
data when converting from µ(E) to χ(k).

As with other functions, even though the interpolation functions are intended for working
with other arrays, they can be used with some of their arguments as scalars. This can be useful
to estimate a single value of an array as a scalar as

Ifeffit> y = splint(old.x, old.y, x)

which will define y to be the scalar value of old.y at old.x = x.
The functions lconvolve() and gconvolve() provide ways to convolve a data (given

by two arrays: y(x) represented by my.x and my.y for x and y, respectively) with a Lorentzian
or Gaussian function. For example,

3 STRUCTURE AND SYNTAX OF IFEFFIT 16

Ifeffit> my.y = lconvolve(my.x,my.y,sigma)

will convolve y(x) with a Lorentzian function described by sigma. Similarly,

Ifeffit> my.y = gconvolve(my.x,my.y,sigma)

will convolve y(x) with a Gaussian function described by sigma. Convolution can be a slow
process, show this should be used with caution, and special care should be given to whether
set() or def() is used with these functions.

3.5.5 XAFS-specific Functions for σ2

There are two intrinsic functions to calculate σ2 for an XAFS path. The debye(temp,
theta) function generates σ2 for a path given a temperature temp and Debye Temperature
theta using the correlated Debye Model implemented by Rehr, et al. in FEFF. Similarly,
eins(temp,theta) calculates σ2 for a path given a temperature temp and Einstein Tem-
perature theta using the Einstein Model.

Of course, these two functions need more information than just external temperature and
characteristic temperature. All of the other information depends on which XAFS path is be-
ing considered, and is found using the concept of the Current Path, further discussed in Sec-
tion 7.1. Without repeating too much of that discussion here, the basic point is that IFEFFIT

keeps track of which path it is considering with the variable path index. Within the func-
tions ff2chi and feffit(), this variable is looped through the paths you specified, and the
path-dependent values like reff are automatically updated. Similarly, if a σ2 Path Parameter
depends on debye() or eins() (even indirectly), it will automatically be updated. From out-
side ff2chi() and feffit(), you can set path index yourself, and then both debye()
and eins() will use be evaluated for the specified path.

3.6 Commands, Arguments, and Keyword/Values

As mentioned in section 3.1, every operation you send to IFEFFIT is a command, and commands
have the general syntax

Ifeffit> command(key= value, key= value, key= value, ...).

Here, we’ll give a more in-depth discussion of the functionality hinted at in section 3.1.
Generally speaking, arguments (including keyword/value pairs) can be in any order. The

rules for dealing with keyword/value pairs are discussed below , but for I’ll just say that the
keyword itself determines what type of variable will be read, and that the equal sign (=) and
comma (,) are the delimiters between the keyword and the value. The value is often treated as a
character string, in which case it’s often safest to enclose it in quotes.

Many commands have default keywords that are expected in the first few arguments. For ex-
ample, spline has default keywords of energy and xmu for the first and second arguments,
so that

Ifeffit> spline(my.x, my.y)

is shorthand for

Ifeffit> spline(energy= my.x, xmu= my.y)

Similarly, plot() has default keywords of x and y for the first two arguments, so that

3 STRUCTURE AND SYNTAX OF IFEFFIT 17

Ifeffit> plot(my.x, my.y)

is the same as plot(x = my.x, y = my.y). Let me clarify this. In this example, the first
keyword is taken as x for plot() because my.x is not a keyword, and it is the first argument
in the list. This is not to say that the first argument without a known keyword will be used as
the x-array.

Ifeffit> plot(color = blue, my.x, y = my.y) # No!

will not work. For several commands, there are keywords that don’t really require a value. Such
keywords are often used as flags, and so just giving the keyword is sufficient. For:

Ifeffit> pre_edge(my.energy, my.xmu, e0find)

the e0find will cause E0 to be determined, even if it appears to be known already. Similarly,
in

Ifeffit> plot(my.energy, my.bkg, nogrid, xmin = 8800)

the nogrid flag will draw the plot without the background grid. Actually, flags like ‘nogrid’
don’t really ignore their value – they interpret their value as either ‘true’ or ‘false’, and are true
unless the first character of the value is f, F, n, N, or 0. Specifically, a blank value means ‘true’,
so that a value is not needed.

Some commands don’t use keyword/value pairs for all their arguments, but use lists for
some of their arguments. The notable examples of this are write data(), ff2chi(),
and feffit(). write data() uses lists of arrays of text strings to write out to a file. Both
ff2chi() and feffit() take a list of FEFF paths to use in the sum-over-paths. write data()
is somewhat more complicated, as it interprets a few arguments as keyword/values (notably, the
file keyword), but expects lists of arrays and strings. Since write data() can even take a
glob ‘*’ character, it is definitely the command with the least ‘normal’ syntax. It may be con-
venient to think of lists as values without keywords, but it’s probably better to not think about it
at all. Lists are used when they make sense, which turns out to not be very often.

As mentioned in section 2.2, commands take their input from both the argument list and the
global Program Variables. More precisely, many commands read default values for command
parameters from the global set of Program Variables. In all cases, there is a corresponding
keyword (often using the same name as the Program Variable) that can be used to override the
value read from the Program Variable. Typically, the Program Variables that are used as default
inputs are also written to when the command is finished, so that subsequent executions of that
command focus on what to change from the earlier execution.

This mechanism of having default values allows you to use a mixture of explicit arguments
and “silent” Program Variables. For example, the fftf() command in the initial example took
it’s value for the k-weight from the Program Variable kweight which had been explicitly set
a few a lines up. We could have also said

Iff> fftf(real = my.chi, kmin = 2.0, kmax = 13.0,
Iff> dk = 1.0, kweight=2)

which is more explicit. Of course, there is plenty of room for confusion in this approach of mix-
ing implicit and explicit parameters for a command. In general, the use of implicit parameters
setting should be kept to a minimum. Though it means a bit more typing, you’ll probably be
happier explicitly specifying all command arguments you care about.

The general execution procedure for all commands is this:

3 STRUCTURE AND SYNTAX OF IFEFFIT 18

1. read the needed parameters from the list of program variables. If a program variables has
not yet been defined, it will be created, and initialized to 0 for numeric variables or blank
for strings.

2. read the command parameters from the argument list. This effectively overrides the val-
ues read from the program variables.

3. perform its main tasks, possibly altering or creating some program variables.

4. update the output program variables to the new values.

The description in Chapter 9 for each command contains a complete list of the variables read
as inputs, the variables set on output, as well as the complete list of keywords and the variables
they correspond to.

The procedure listed above may a bit abstract, so an example will probably help. Let’s
investigate the spline() call in the example of the previous chapter in more detail. There,
the deceptively simple command

Ifeffit> spline(energy = my.energy, xmu = my.xmu,
Ifeffit> rbkg=1.1, kweight=1., kmin=0)

was used. Looking ahead to section 9.41, you may notice that spline() actually needs the
values for several scalar variables: rbkg, e0,kmin spl, kmax spl, kweight spl, etc5 to
name a few. So how does spline() get its values for rbkg, e0, and kmax spl?

First, spline() checks if there are already variables named rbkg, e0, etc. If these exist,
their values are taken. Then spline() reads its argument list. Since the keyword rbkg is
given in this example, that value is used in place of any rbkg variable already defined. Now,
some values don’t have defaults, but are required for spline(): the name of the energy and
µ(E) arrays are required. If these aren’t found in the argument list, spline() will complain
and return without calculating anything.

Once spline() has determined all the input parameters, it calculates µ0(E) based on all
the scalar and array parameters. The method used is essentially the same algorithm as AUTOBK,
and is described in detail in XAFS Analysis with IFEFFIT , but it’s sort of secondary at this
point. What’s important here is that the values of some scalar and array parameters may be
changed, or been created if they didn’t exist already. For example, e0 and kmax spl may be
changed if their values at the beginning of spline() were out of the data range. Because
of this possibility, the last thing spline() does before returning is to reset the values of the
Program Variables it has used. This ensures that both you and all the commands you run later
will agree on the values of the program variables like e0.

Of course, each command has its own set of program variables that it will look for on input
and reset on output. Chapter 9 lists the input and output variables for each command, as well as
a bunch of other information about each command.

For the most part, command arguments are interpreted as keyword/value pairs. Keywords
are single words (no whitespace), and are not case-sensitive. Generally, a keyword is followed
by an equal sign, and the text between the equal sign, and up to the next comma or right paren-
theses6 is taken as the value.

5Note that all the Fourier transform parameters for spline() are stored in variables that end with spl.
6Actually, up to the first unprotected comma or right parentheses. A comma or parentheses can be protected by

enclosing it in pairs of parentheses, double quotes, or curly braces.

3 STRUCTURE AND SYNTAX OF IFEFFIT 19

The value is interpreted according to what type of value the keyword wants. That is, if the
keyword wants an array, the value is read as an array, and if the keyword wants a text string (say,
a filename or comment string) the value is read as a string. Most arguments that expect array or
scalar values take expressions which could be a simple value (as in e0 = 8979.5), the name
of existing variable (as in energy = my.energy) or something more complicated, like

Ifeffit> set rbkg1 = 1.2
Ifeffit> spline(my.energy, "a.xmu+b.xmu", rbkg = rbkg1)

Though this may seem unnecessarily extravagant for command-line use, it can be very useful for
more elaborate scripts. This feature is also especially convenient with the plot() command,
as it avoids needing to define intermediate arrays just to plot them:

Ifeffit> newplot(my.energy, "my.xmu - my.bkg")

Note that when an expression is given, it is usually a good idea to enclose the expression in
matched parentheses, double quotes, or curly braces.

3.7 Getting information back from IFEFFIT

At some point, you’ll probably want to get information about Program Variables, Paths, and
other aspects of IFEFFIT’s state. The most basic way to do this is with the show() command.

The show command will print out information about the program variables, fitting vari-
ables, paths, macros, color table, and built-in commands. In it’s simplest form, show() will
print the value and, if appropriate the formula, for a program variable. For scalars, show()
works like this:

Ifeffit> a = 8, x = 9 / a
Ifeffit> show a, x

a = 8.00000000
x = 1.12500000 := 9/a

Note that both the value and formula are shown for x. For text strings, the results are pretty
straightforward – there’s no stored formula, so the string is simply printed.

Ifeffit> $string = ’ My favorite string ’
Ifeffit> show $string

My favorite string

For arrays, however, the results are a little different. Since it’s unlikely you’ll want to see
every element of an array (and if you do, there’s always print()), so the number of points,
maximum, minimum values, and if appropriate the formula are printed:

Ifeffit> my.x = indarr(10)/3
Ifeffit> show my.x

my.x = 10 pts [0.33333 : 3.3333] := indarr(10)/3

To see the contents of a pre-defined macro, just tell the show() command the macro name:

Ifeffit> show make_ps
macro make_ps ifeffit.ps /cps

"dump plot to a postscript file"
plot(device=$2, file= $1)

end macro

3 STRUCTURE AND SYNTAX OF IFEFFIT 20

The arguments to show() can be of mixed type – you can show scalars, strings, arrays, and
macros with a single command. If a program variable is not known, an ‘undefined variable’ will
be printed.

Beyond these simple examples, show() can also print out classes of program variables,
using the special @ symbol. That is, to get a listing of all the scalars (with values and definitions,
if appropriate), type show @scalars. Similarly, show @arrays and show @strings
will show all the arrays and strings, respectively. The listing shown for scalars and arrays will
be sorted with “most constant” (i.e., those values that were set()) at the top, and the “least
constant” (i.e., those that depend on other variables) at the bottom. This means the listing is
subject to re-ordering at any time.

All the fitting variables can be shown with show @variables: both the current value
(which would be the initial value before a fit and best-fit value after a fit) and estimated un-
certainty will be shown. show @colors will print out the plotting color table (discussed in
section 5.3). show @macros will print out all the macro names, with description and default
arguments, but won’t print out the full text for each macro. You can say show @macro =
make ps or just show make ps to see the full contents of a macro.

For XAFS paths defined with the path() command, show @paths will list the values
of all the path parameters for all paths. To get a listing for a limited selection of paths, show
@path = 1 or show @path = 1,2,5 will show just those paths.

In addition to the show() command, you can also print out messages with the echo()
and print() commands. echo() simply prints its argument, which is of limited utility at
the command line, but is often helpful in more complicated scripts:

Ifeffit> echo(" I am in macro BKG, about to write outputs")
I am in macro BKG, about to write outputs
Ifeffit> echo " t"
t

print(), on the other hand, is a more general purpose printing command, interpreting its
arguments as strings or mathematical expressions where appropriate, and printing out the re-
sulting values. For example,

Ifeffit> print pi
3.141593

You can print out more than one value at a time, and even print out the value of expressions,
making print() act like a simple calculator:

Ifeffit> var = 100.
Ifeffit> $string = ’This is a string’
Ifeffit> print pi/2 sqrt(5*var) $string

1.570796 22.36068 This is a string

print() does a mediocre job of parsing, so it is best to enclose expressions in quotes or
double quotes. Enclosing in single and double quotes have different results, though. Double
quotes cause evaluation, while single quotes prevents evaluation, so the string is written out
literally. That is, you can say something like this.

Ifeffit>print ’x , sqrt(x) = ’ ," x ", " sqrt(x) / 2 "
x , sqrt(x) = 10.22000 1.598437

Ifeffit>print ’ Rbkg = ’, rbkg, ’ Ang ’
Rbkg = 1.2000000 Ang

3 STRUCTURE AND SYNTAX OF IFEFFIT 21

Table 4: Table of Values for &screen echo
Value Meaning

0 save message to echo buffer.
1 print message to screen.
2 print message to log file, if open.
3 print message to both screen and to log file.

Finally, unlike show(), print() will print out all elements of an array. I won’t give an
example of that – you can try it for yourself.

3.8 Log Files, echo, show, and print

In the previous section we saw how echo(), show() and print() were used to get various
information from IFEFFIT printed to the screen during an interactive session. Sometimes, you
don’t care to have such information printed to the screen, but would like to write it directly to a
file. Furthermore, when controlling IFEFFIT from an external program or script, you may want
to save the messages that would’ve been written to the screen and read them into the calling
program. All of these things are possible within IFEFFIT and in this section.

IFEFFIT sends all its output messages through a single routine that either writes the message
to the screen (technically, standard output) or to an external log file, or saves the message into a
buffer that a calling program can read later. Which of these actions is taken depends on the scalar
variable &screen echo and whether a log file is actually open and in use. The valid values
and meanings for &screen echo are given in Table 4. When IFEFFIT starts, &screen echo
is 1, even when run from an external program, so to set up an external program to ’capture the
echo buffer’, you need to set &screen echo to 0. If doing this, it’s probably a good idea to
check the echo buffer after each command. Examples of doing this are available.
For normal interactive use, the default &screen echo is probably appropriate until you want

to write some of the information from IFEFFIT to a log file. For that, the log() command is
exactly what you need. Using log() is simple:

Ifeffit> log(file = my.log)

will close any existing log file (there can be only one log file at a time), and open my.log as
the current log file. It will also set &screen echo to 2, so that any subsequent outputs from
IFEFFIT, including from the show(), print(), and echo() commands are sent to this file
instead of the screen. Because of system-specific constraints, you can’t rely on the log file being
completely full until it’s closed, which you can do explicitly with

Ifeffit> log(close)

Though it’s not completely necessary, you can also tell log() the level of &screen echo to
use as well:

Ifeffit> log(file = my.log, screen_echo = 3)
Ifeffit> log(file = my.log, screen_echo = both)
Ifeffit> log(file = my.log, screen_echo = tee)

3 STRUCTURE AND SYNTAX OF IFEFFIT 22

will all tell log() to write all text output to both the log file and the screen. You can also
change the value of &screen echo yourself while a log file is open.

Note that because a script or program may use the echo buffer for its own purposes, it may
not be wise to overwrite the value of &screen echo from within an IFEFFIT application. For
example, most of the other GUI applications (including G.I.FEFFIT, ATHENA, and ARTEMIS)
set &screen echo to 0 and then intercept the output to save in a history buffer or display to
some information screen. This means that you don’t need to set &screen echo yourself, and
that bad things may happen if you do! On the other hand, getting a history of the input or output
from these programs is usually a matter of cutting-and-pasting from the displayed output.

4 INPUT AND OUTPUT FILES 23

4 Input and Output Files

At some point, you’ll want to read your data into IFEFFIT. Getting data in the expected format
is quite possibly the hardest part of dealing with any data analysis program. Currently, IFEFFIT

uses plain text files with data in columns delimited by white space (blanks and/or tab characters).
There is also some support for a IFEFFIT-specific file format for storing data to be read back
into subsequent IFEFFIT sessions. The ‘old-style’ UWXAFS RDF binary files are not currently
supported.

IFEFFIT expects data to be in plain text (also known as ASCII) files that have some lines of
descriptive text followed by some numerical arrays stored in space- or tab-delimited columns.
The column-based data files have the feature that only one set of related data can be stored in a
given file. In particular, all arrays in an ASCII column file must have the same number of data
points. This is not usually a serious problem, but it is something to keep in mind. Another thing
to keep in mind is that IFEFFIT does not yet have any special procedures to support beamline-
specific data.

The commands for dealing with column files are read data() and write data().
These commands are discussed in this chapter and in sections 9.34 and 9.45.

4.1 Reading ASCII Column Files

When reading data files with read data(), IFEFFIT needs to assign array names to the arrays
read from the file. Deciding the arrays names is the only tricky part to read data(). Since
all arrays in IFEFFIT have two-part names, with a “group name” for the suffix, and since data
in any data file are usually meant to be grouped together, IFEFFIT will use a common group
name for all arrays read from a given file. The group name used can be specified explicitly with
the group keyword to the read data() command. If not specified, the group name will be
automatically set based on the file name itself.

Before we get on to the details of naming the arrays, let’s discuss the title lines in the file.
As said above, these lines contain descriptive text about the data, and not the numerical data
itself. Normally, IFEFFIT will try to figure out where the descriptive text ends and the numeric
data begins. One simple way to ensure that this is done correctly is to put some non-numeric
character in the first column of each line of the header. ‘#’, ‘%’, ‘*’, ‘!’, and ‘;’ are popular
choices for such “comment characters”, and IFEFFIT will respect them all. Another possibility
is to specify the number of title lines explicitly, with the title lines keyword, as in

read_data(file=my.chi, title_lines = 3)

It is generally easier to arrange for files to have title lines that always begin with some comment
character than to have to count the number of title lines for each file.

The first 64 title lines will be stored in strings named according to the “group name” with
names like $GROUP title II. That is, when reading a file with group name “xfile”, the
first comment line will be save in $xfile title 01, and the twelfth in $xfile title 12.

OK, on to the naming of the arrays. There are several ways to specify how the suffixes
of the array names will be. The sheer number of options may seem unnecessary at this point,
but after using IFEFFIT for a while, you will probably end up using several of these methods
depending on the data file you’re using. The simple way to name the arrays from a file is to
make the suffix of each array name be the integer for that column, by specify type=raw in the
read data() command. That is,

read_data(file=myfile.dat, group = A, type = raw)

4 INPUT AND OUTPUT FILES 24

Table 5: Table of Known Data Types for read data(). Note that if there are more columns
in the file, the subsequent arrays will be named by the column index.

Data Type Array suffixes

xmu energy, xmu
chi k, chi
rsp r, chir re, chir im, chir mag, chir pha
qsp q, chiq re, chiq im, chiq mag, chiq pha
chi std k std, chi std
xmu.dat energy, e wrt0, k, mu, mu0, chi
chi.dat k, chi, mag, phase
feff.dat k, cphase, mag, phase, redfactor, lambda, realp

will create arrays A.1, A.2, A.3, and so on. The “raw” names aren’t very mnemonic, but
they’re simple and and very predictable. For analyzing several similar files, you could read in
the data using “type = raw” and write a macro to rename the “raw” column arrays. For
more on macros, see chapter 10.

Often times data comes in fairly standard file types, in which the columns have known
arrays. So the second way to name arrays in IFEFFIT is to specify one of several known “type”
to read data. Thus,

read_data(file=my.chi, group = A, type = chi)

will name the array from the first column A.k, and that from the second column A.chi. Any
remaining columns will be A.3, and so on. Similarly,

read_data(file=cu.xmu, type = xmu)

will name the array from the first column cu.energy, and that from the second column
cu.xmu. (Note here that “group” was not specified, and so was taken from the file name
itself). Table 5 lists all the recognized file types and the associated column names.

Another common situation is for files to come with column labels already provided in the
file. In such a case, the type = label can be used to read the column labels from the file
itself, provided the file has been formatted with this in mind. By that I mean 1) the file has text
strings at the top of the file, before the column data, 2) that the next to last text line is a line of
minus signs (the important thing is that the third through eight character on the line are minus
signs), and 3) the last text line is a label line. Such a file would look like this

Cu XAFS
data file containing xmu(energy)
#-----------------------------
energy xmu i0
8760.02 1.313982 60351.3
8770.01 1.323154 59808.3
8779.98 1.332213 59290.3
8790.02 1.344031 58709.3
8799.98 1.352667 58245.3
8810.02 1.364248 57719.3
8819.99 1.375764 57165.3
8829.98 1.384695 56690.3

4 INPUT AND OUTPUT FILES 25

and be said to have column labels “energy”, “xmu”, and “i0”. All the files distributed with
IFEFFIT have columns labeled in this way and IFEFFIT normally write out files with such labels.
To read this file, and have the array be named by the given labels, you would say

read_data(file=my.xmu, group = A, type = label)

which will create the arrays A.energy, A.xmu, and A.i0. There are some minor issues
when column labels contain characters (“()./,” and so forth) which can’t be in the suffix part of
an array name, in which case the arrays names will end up a little mangled – usually “ ” will be
used instead of the offending character.

When all else fails, you’ll just want to specify the array names yourself. Keeping in my
the previous method, the preferred way to specify the names is with the label keyword. This
overrides all the above methods, and can be used to override default column names from the
file itself. The argument to label is a space delimited string with the array suffixes as if it had
been the label string in the file. Thus, using

read_data(file=my.xmu, group = A, label = ’x y z’)

would create arrays A.x, A.y, and A.z, even if the arrays are labeled something else in the
file.

A note of caution: there is nothing preventing two columns from having the same label.
This is currently an unsolved ‘feature’ that may be fixed in the future.

As we have seen, there are several options for how to name arrays read in with read data().
So, which one is the default if neither type or label are given, or if both are given? The an-
swer is this: First the string from the label keyword is used. If label is not given, then the
type specified by the type keyword is used to generate the array names (with results shown in
Table 5). If neither of the label or type keywords are given, the existing “label line” from
the file is used. Finally, if there is no label line in the file, the column indices (i.e. type=raw)
are used.

Given these complicated rules, it might be nice to know for sure what arrays were actually
read in. This may not seem so important when using IFEFFIT at the command-line, because you
can always do a show @arrays or even show @group=A and figure it out. But if you’re
writing a script, this can be a serious issue. In all cases, read data() will set the string
$column label to a space-delimited string of the array suffixes just read in, as if this had
been the label string in the file.

4.2 Sorting Data with read data()

In general, IFEFFIT expects data to be well-ordered. For µ(E) data, it generally expects the
data to be in strictly increasing order of energy – and without repeated energy values. Unfortu-
nately, not all data comes like this. Notably, XAFS data collected in “continuous scan mode”
or “Quick-EXAFS” is rarely guaranteed to be in strictly increasing order. In addition, data is
not always perfectly ordered for some beamlines using encoder-readback for monochromator
position even in step-scan mode.

To overcome problems resulting from poorly-sorted data, read data() allows you spec-
ify a column number to put into strictly non-decreasing order (that is, increasing order but with
repeated points retained) and to sort the other columns accordingly. To do this, you would use
the “sort” keyword,

read_data(file=sro_xafs.dat, group = sro, sort=1)

4 INPUT AND OUTPUT FILES 26

Note that the column number is given, not the column name. The reason for this is that the actual
column names are not necessarily known prior to running read data(), and confusion could
easily occur between similarly named columns. By default, the data will not be sorted. You can
ensure that sorting will not be done by using read data(...,no sort=1,...).

The spline(), pre edge(), and bkg cl() commands will internally sort µ(E) data
into strictly increasing order (averaging repeated energy points) to avoid such problems. Still,
if you may have poorly-sorted data, it is recommended that you sort it with read data()
before doing any processing on it.

4.3 Writing ASCII Column Files

To write data with IFEFFIT, you use the write data() command, specifying the name of
the output file, and listing the names of the text strings, scalars, and arrays to write to this file.
Text strings are written at the top of file, one per line, in the order you specify. The “comment
character” is written at the beginning of each of the lines of text (in the first non-blank row).
To specify the comment character, either set the Program Variable $commentchar or set the
commentchar keyword to write data.

After the string variables are written, scalars are written, one per line, in the form “¡comment
character¿ ¡scalar name¿ = ¡scalar value¿”. After the scalars, a line of minus signs is written,
and the a label line (suitable for later reading with read data(..., type = label))
is written containing all the array suffixes. Both the line of minus signs and the label line will
still have the “comment character” at the front of the line). Finally, the arrays are written out in
columns, in the order (left-to-right) listed.

write data() will write the same number of points for all arrays, even if the Program
Variables have different number of points. In fact, the minimum number of points will be writ-
ten. At this writing, write data() is limited to writing out 64 columns per file.

It’s common to want to write out all the strings named $GROUP title II to a file, so
as to preserve the comments from the starting file(s). Typing each name individually would be
painful, so write data() supports the usual “*” glob character to mean “all that match”. So
putting $GROUP title * in the list would cause all strings matching that name to be written.
You can use a “*” in this way to match any string names. You could even use it to match array
names using something like *.xmu or a.*, but since the number of points could be different
for the different arrays, this should be used with caution.

4.4 IFEFFIT PAD Format for Save and Restore Files

Though ASCII column files are often the most convenient form to use, they are somewhat
limited for large amounts of data. The least desirable features of ASCII files are that they take
too much space, that they can’t store arrays of different sizes, and that they can’t hold many
arrays. All of these limitations can be overcome by using the PAD (that stands for Packed ASCII
Data) file format specially designed for FEFF and IFEFFIT. PAD files are fully portable plain-
text files that can store an unlimited number of arrays of different sizes and can be transferred
to (and read on!) any machine. The PAD format stores approximately 12 significant digits for
each numerical value.

Of course, there are drawbacks to the PAD file system. These are 1) a slight increase in time
to read the file compared to regular binary (but much faster than a set of plain ASCII files!!),
and 2) these files cannot be used directly in any other program. The second point is a serious
problem. Like the UWXAFS RDF files that they’re intended to replace, the PAD format is a

4 INPUT AND OUTPUT FILES 27

home-built file storage system. Moving to one of the accepted scientific data formats such as
netCDF may be necessary in the future.

PAD files are especially suited for IFEFFIT because they can store and mix all types of
Program Variables. This makes them ideal for saving a full set of IFEFFIT variables. The
save() command (section 9.38) uses the PAD format to save the current state of IFEFFIT into a
save file that can be then read in with restore() (section 9.37) to re-create a previous IFEFFIT

session. Since all Program Variables are saved and since the PAD files are saved in printable
ASCII characters, this save()/restore() mechanism makes a completely portable way to
preserve an IFEFFIT session into a single file for later inspection or to share with a colleague.

5 PLOTTING WITH IFEFFIT 28

5 Plotting with IFEFFIT

Graphical displays of data are essential to data analysis. IFEFFIT uses PGPLOT, a simple graph-
ics library that is fairly well-supported and portable, and can be accessed from fortran, C, and
a variety of scripting languages. PGPLOT supports many graphics devices (terminals, graph-
ics files, hardcopies), and works well on Unix, MacOS X using X Windows, and Windows
systems. Much of the information in this chapter is adapted from the PGPLOT documentation.
That documentation is aimed at the programmer and not the end user, but the concepts discussed
are fairly simple. If you have a question about IFEFFIT graphics, you may wish to consult the
PGPLOT documentation, which can be found at http://www.astro.caltech.edu/˜tjp/pgplot/.

Plotting in IFEFFIT is encapsulated in the commands plot(), newplot(), cursor(),
zoom(), color(), plot text(), plot marker(), and plot arrow(). These com-
mands make respectable looking plots on screen and paper, and provide good flexibility for
graphical data analysis. These routines allow different colors and linestyles for each trace on
the plot, They allow other symbols, text strings, and arrows anywhere on the plot window, and
allow a ’legend’ of plotted trace to be easily and automatically built. They also allow you to
use the cursor to get x-y positions of particular points on the plot window and to zoom in on
particular areas of the plot window.

The hardcopies made by PGPLOT are of reasonable quality, but may not satisfy your criteria
of publication quality. Since there are many programs designed especially for these purposes,
and since IFEFFIT is intended to be an XAFS analysis program, not a high-quality graphics
program or a data visualization tool, the quality of the resulting graphics seems acceptable.

The plot() command is the main plotting command in IFEFFIT, making a two-dimensional
line-plot or scatter-plot given x and y arrays. There are many optional arguments, most of which
will be discussed in this chapter. A complete list is given in section 9.27. The newplot()
command is a minor variation on plot(), that will always erase the current plot before plot-
ting. The rest of this chapter will discuss the details of the various plotting options available in
IFEFFIT.

5.1 Specifying Data for Plotting

The plot() command plots arrays of data. Typically, you you will specify array names for
both the x- and y-arrays, as in

Ifeffit> plot(x= my.x, y= my.y)

Of course there are many other optional keywords you can give to plot(), but here we’re just
focusing on the x and y arguments because they are the most important. As you use IFEFFIT,
you’ll find that a simple plot() command such as the one above gets used a lot. Because of
this, even this simple plot() command can be made easier, more flexible, and more powerful,
as will be discussed here.

First, the plot() command uses the concept of positional keywords, so that you can drop
the x= and y=, and just use

Ifeffit> plot(my.x,my.y)

that is, the first argument in the list (i.e., everything between ’(’ and the the first comma) with-
out an explicit keyword is assumed to be the value for x, and the second argument without a
keyword is assumed to be the value for y. Since a command that fits on a single line can drop
the parentheses, this can become

http://www.astro.caltech.edu/~tjp/pgplot/

5 PLOTTING WITH IFEFFIT 29

Ifeffit> plot my.x, my.y

Much, or perhaps most, of the data you’ll want to plot will be in a single group. If the x
and y arrays you intend to plot are in the same group, you can specify the group once, and only
give the suffixes of the array names:

Ifeffit> plot x, y, group=my

In fact, if the string variable $group is set to the group you want (and it often is set to the
“current group” after most data processing commands, and the plot() command itself), this
group name will be used by default:

Ifeffit> $group = my
Ifeffit> plot x, y
Ifeffit> plot x, z

which greatly simplifies the task of over-plotting data from the same group.
Since there are two plot() commands in the above example, this is a good time to discuss

when the plot window gets cleared for a fresh plot. Normally, the plot() command adds the
specified trace to the existing plot: over-plotting is the normal behavior. To clear the plot, you
can use

Ifeffit> newplot (my.x, my.z)

which will erase the previous plot and start over. You can simply send an empty newplot()
command and subsequent plot() commands will add to this refreshed plot window.

In many cases, you’ll want to plot more than one y array as a function of the same x array.
This leads to a slight variation on the rule for positional keywords. I said above that the first
argument without a keyword is taken for x and the second for y, but the full truth is a little more
complicated. If exactly one argument has no keyword, and there is no explicitly set y=...
argument, then the argument without a keyword is actually taken as the y array. In this case, the
x array is the previous x array. That is, after

Ifeffit> newplot (my.energy, my.xmu)

these two commands will produce the same effect:

Ifeffit> plot my.energy, my.bkg
Ifeffit> plot bkg

If you give only one array for the first trace to plot, a simple index array (i.e, 1,2,3,4,. . .) will
be used for x, so that

Ifeffit> newplot my.energy

would be equivalent to

Ifeffit> my.tmpx = indarr(npts(my.energy))
Ifeffit> newplot my.tmpx, my.energy

That covers how to make the plot() command simpler, now let’s look at how to make it
more complicated. As the last example hints at, sometimes it’s desirable to plot arrays that do
not yet exist as named arrays in IFEFFIT. For example, to view χ(E) = µ(E) − µ0(E) after a
background subtraction from spline(), you might say

5 PLOTTING WITH IFEFFIT 30

Ifeffit> cu.chie = cu.xmu - cu.bkg
Ifeffit> plot(x= cu.energy, y= cu.chie)

or use one of the simplified forms discussed above. But if you only want to view χ(E), not
do any processing with it, it seems unnecessary to create it. So, in fact you can pass a simple
expression as the y (or x) argument to plot():

Ifeffit> plot(x= cu.energy, y=cu.xmu-cu.bkg)

In fact, the expression can include any of the data and any of the functions described in sec-
tion 3.5. This provides a flexible way to plot a variety of functions, but there are some caveats to
using expressions instead of existing arrays. First, to be sure the expression is parsed correctly,
you should put it in quotes:

Ifeffit> plot(cu.energy, y="(cu.xmu - cu.bkg)*(cu.energy-e0)")

This is especially true if the value in the keyword/value pair contains spaces: use quotes or
you’re likely to get several warnings and weird results. Also, when using an expression instead
of an existing array, you should not rely on x and y being default positional keywords, and
explicitly use the y= as shown above.

5.2 Error Bars

If you have experimental data for which you have estimates of the uncertainties in the data,
it is often useful to display these uncertainties using error bars. This can be done using the
keywords dy and dx which name arrays for the point-by-point uncertainties in the y and x
arrays, respectively. That is, if dat.sigma is an array of uncertainties in dat.y,

Ifeffit> plot(dat.x, y=dat.y, dy=dat.sigma)

will add vertical error bars extending from dat.y-dat.sigma to dat.y+dat.sigma.
Similarly, though it somewhat less usual for EXAFS data, if you have an estimate for the

uncertainties in the ordinate array, these can be displayed using

Ifeffit> plot(dat.x, y=dat.y, dx=dat.delx)

will add horizontal error bars extending from dat.x-dat.delx to dat.x+dat.delx.
Though we’ll discuss how to select plot colors and line styles in the next section, the error-

bar plots generated with these plot() commands will use a single color and style for the main
trace and error bars. If you’d like to see the error bars alone, or have thee error bars in a different
color from the main trace, the you should use style=points1 when plotting the error bars:

Ifeffit> plot(dat.x, y=dat.y, color=red)
Ifeffit> plot(dat.x, y=dat.y, dy=dat.sigma,

color=black, style=points1)

5 PLOTTING WITH IFEFFIT 31

5.3 Colors, Line Styles, and Other Attributes

IFEFFIT allows different colors for each trace as well as the background, the foreground (text
strings and the box around the plot), and the optionally displayed grid. It also supports different
styles of lines (solid, dashed, points, etc.) to be used for different x-y pairs. This section will
explain how to use these options in detail.

There are a few different ways to specify colors for x-y traces, background, foreground, and
optional grid. First and most simply, you can specify the color for each object directly by name:

Ifeffit> plot(my.x,my.y, color=red, bg=white)

which will draw the x-y trace in red on a white background. This is probably the easiest way
to get the colors you want. The available set of named colors is determined when the PGPLOT
routines are installed, and are listed in the file rgb.txt in the PGPLOT directory. This file is
usually very close to the standard X-Windows set of colors, so you can specify dodgerblue3
and bisque, but not teal. For other colors, you can specify the red-green-blue intensities in
hexadecimal format, using the somewhat standard ‘#RRGGBB’ format:

Ifeffit> plot(my.x,my.y,color=’#FF00FF’)

will be magenta, for example.
If colors are not specified in the plot() command, the default values used will be taken

from an internal “color table”. The color table lists the colors used for background, fore-
ground, grid, and then the traces in order that they are drawn, and can be displayed with either
color(show) or show @colors. A typical output would look like this:

Ifeffit> show @colors
plot color table:

bg = white
fg = black
grid = #CCBEE0

1 = blue
2 = red
3 = darkgreen
4 = black

...

which means the first trace drawn would be in blue, the second in red, and so on. You can
change the values in the color table using the color() command, like this:

Ifeffit> color(fg = black, bg = white, grid = ’\#AABB99’)
Ifeffit> color(1 = yellow, 2 = cyan)
Ifeffit> color(3 = white, 4 = magenta)

which will reset the default colors to plot with. Such commands may be placed in a start-up file
.ifeffit. For postscript output intended for a printer please note that a black background
will use a lot of ink – a white background is recommended for hardcopies.

There are a few different line styles available as values for the style keyword. The sup-
ported line styles are given in Table 6 with examples shown in Figure 1. There is a fair selection
of points available for the points and linespoints styles, which are specified by integer

5 PLOTTING WITH IFEFFIT 32

Table 6: Supported Plotting line styles for the plot() command. These can be specified with
plot(..., style=lines) and so forth. The available point types are show in Figure 2.

Line Style Description

solid solid line
dashed dashed line
dotted dotted line
dot-dash mixed dot-dashed line
points a special marker at each point (see Figure 2)
linespoints solid line with a special markerd at each point

Figure 1: A selection of plotting line and points styles for IFEFFIT.

with points1, points2, linespoints12, etc, with examples of the available point types
shown in Figure 2.

The width of the lines for all traces and axes can be set with the linewidth keyword,
which takes an integer value. Values between 1 to 5 are appropriate, and the default is 2.

5.4 Text Strings and Labels

Text strings can be put on a plot to labels axes, give a title, as a legend for each trace, and to
put text at user-specified coordinates. There is some control over the character size and font
used, and there is a primitive syntax for non-standard characters that allows Greek letters, the
Ångstrom symbol, subscripts, and superscripts. Like many aspects of PGPLOT, the possibilities
are limited, but include a reasonable set of functionality needed for most applications. The full
list of plot() keywords affecting the placement of text strings on the plot window are given
in Table 7. In addition to the plot() command, the plot text() command can be used to
put text strings at selected x-y coordinates.

The keywords xlabel and ylabel set the labels for the x-axis and y-axis, respectively,
while title will set the title above the drawing box. Each x-y trace can have a legend that will
appear along the right side of the plot, with a short version of the plot line style and a “legend
key” – a short text string that you can set with the key keyword, as in

5 PLOTTING WITH IFEFFIT 33

Figure 2: The plotting point types for IFEFFIT, as produced with syntax such as
style=points3, and so forth. The linespoints types such as style=linespoints3
will show the same point type, joined with a solid line.

Ifeffit> plot(dat.r,dat.chir_mag, color=red, key=’data’)
Ifeffit> plot(fit.r,fit.chir_mag, color=red, key=’fit’)

Text strings can also be put anywhere on the plot using either the text keyword, which
will put a label at a coordinates specified by the keywords text x and text y or by the
plot text() command.7

You can put on multiple labels (up to 32) on a plot, but once on they can only be erased by
making a new plot, which will erase all the labels.

Ifeffit> plot(text=’300 K Data’, text_x=7025, text_y=0.2)

or

Ifeffit> plot_text(x=7025,y=0.3, text=’400 K Data’)
Ifeffit> plot_text(7025, 0.5, ’500 K Data’)

As you can see, the advantage of the plot text() variation is that it has default positional
keywords for x, y, and text which greatly simplifies the syntax. Such labels are often useful
when coupled with arrows, discussed in section 5.5.

The sizes of the various text strings and plot markers can each be set separately. The text
size for the axis, x- and y-labels, and title can be set with the keyword labelsize. The
text size for legend keys and explicitly-placed text strings are set with the keyword textsize.
The size of the point markers for point and linespoints line styles are set with the markersize
keyword. The keyword charsize will set all of the sizes to the same value. The value taken is
a real number, with appropriate values usually in the range of 1.0 to 3.0. To completely suppress
the axis text, you might be tempted to set labelsize to zero. This can cause odd results, so
using a very small value such as

Ifeffit> plot(dat.x, dat.y, labelsize=0.0001)

7These two variations of plot(text=’300 K Data’, text x=7025, text y=0.2) and
plot text(x=7025,y=0.2,text=’300 K Data’) really are equivalent and can be mixed.

5 PLOTTING WITH IFEFFIT 34

Table 7: Arguments for the plot() command for putting text strings on the plot window.
Keyword Meaning

xlabel the label of the x-axis
ylabel the label of the y-axis
title plot title along top
key keyword describing each trace for legend
charfont integer to select font for text
charsize character size for all characters and markers
labelsize character size of axis labels and numbers
textsize character size of text strings and legend keys
markersize size of plotting point markers
text text string for a general plot label
text x x-coordinate for this text string
text y y-coordinate for this text string

will effectively suppress the axes from being drawn.
The syntax of the text strings themselves is almost straightforward. The PGPLOT docu-

mentation gives a more complete description, but I’ll outline the main points here. Most text is
displayed as typed, of course. You can also use “control sequences” to control formatting and
special characters.

PGPLOT uses Hershey (vector) fonts which are easy to render when rotated but look slightly
less than ideal. You can specify one of four fonts as the default font with the charfont
keyword, which takes an integer 1–4 as its value. Charfont =1 is the normal typeface – a
sans serif font. Charfont = 2 gives a roman font, Charfont = 3 gives an italic font, and
Charfont = 4 gives a script font which is pretty difficult to read. You can mix these fonts
in a text string with the an escape sequence.

\fn The Sans Serif Font \fi The Italic Font
\fr The Roman Font \fs The Script Font

which will render fonts as shown in Figure 3.
To get Greek characters, escape sequences starting with \g are used: \gm give µ, for ex-

ample. Subscripts are done with \d and superscripts with \u. There are no sub-subscripts,
super-superscripts, sub-superscripts, etc. The Ångstrom symbol is \A. Examples of these, and
some string sequences to get common symbols for XAFS analysis are shown in Figure 3, and
are provided in the examples distributed with IFEFFIT.

5.5 Markers and Arrows

The plot points as shown in Figure 2 can be put at any location on the plot window as markers.
This is done with the oplot marker() command

Ifeffit> plot_marker(x=7000,y=4,marker=1)
Ifeffit> plot_marker(7000,2,3)

where the value of marker gives the integer from Figure 2 for the symbol to use. Like the
plot text() command, this command can use default positional keywords for x, y, and
marker, greatly simplifying the syntax.

5 PLOTTING WITH IFEFFIT 35

Figure 3: Sample of plotting text strings, fonts, and special characters for IFEFFIT

Arrows and lines can be put anywhere on the plot window, pointing to some spectral feature
of the plotted data. This is done with the plot arrow() command, which takes beginning
and end points, and parameters describing how draw the arrow head (including whether to have
no arrow head at all). An arrow can be placed like this:

Ifeffit> plot_arrow(x1=7000,y1=4, x2=7050,y2=3)

More complex control over the shape of the arrowhead can be obtained with the keywords
size, angle, and barb. The size keyword alters the size of the arrowhead, while angle
gives the angle subtended by the point in degrees. The barb keyword controls the shape
and concavity of the arrowhead. Examples, with reasonable values for the size and barb
parameters include

Ifeffit> plot_arrow(x1=10, y1= 4, x2=25, y2=4, barb=2)
Ifeffit> plot_arrow(x1=65, y1= 4, x2=90, y2=4, barb=0,outline=1)
Ifeffit> plot_arrow(x1=65, y1= 0, x2=90, y2=0, angle=100,barb=0)
Ifeffit> plot_arrow(x1=65, y1=-4, x2=90, y2=-4, size=5)
Ifeffit> plot_arrow(x1=30, y1= 8, x2=90, y2=8, no_head=1)

The result of these and other plot arrow() commands are shown in Figure 4. The arrowhead
can be made hollow by setting outline=1. To get a line between points (x1,y1) and (x2,y2),
the plot arrow() command is used with no head=1, which completely suppresses the
arrowhead.

5.6 Cursor and Zooming

For interactive data analysis, it is often desirable to get the x-y coordinates of some particular
point on a plot, or to zoom in on a particular region of the plot window. The cursor()
command allows you get the coordinates of a point on the plot window by clicking on it with
the mouse. The x- and y-coordinates are then stored in the IFEFFIT variables cursor x and
cursor y. These values can be written to the screen immediately by using the show keyword:

Ifeffit> cursor(show)

5 PLOTTING WITH IFEFFIT 36

Figure 4: A selection of examples of plotting arrow parameters for IFEFFIT.

This will wait for you to click on the plot window, then print out the result in the form

cursor: x = 7.78890 , y = 0.963039

It is important to remember that the cursor() command blocks all other processing until you
click on the plot window. For one thing, this means that putting cursor() in a macro should
be done with caution.

By default, cursor() will show a small cross at the cursor point, but it is possible to
change the look of the cross-hair shown while selecting the cursor point. For example,

Ifeffit> cursor(crosshair)

will show a moving crosshair that extends the full height and width of the plot window. There
are a few other variations on the look of the cursor when selecting points. For example,
cursor(vert) will show just a vertical line that spans the entire length of the plot win-
dow, and follows the cursor as you move the mouse. Similarly, cursor(horiz) will show a
horizontal line that extends over the entire plot window and moves with the cursor position.

For selecting x-ranges (say, for choosing an energy range for the pre-edge region), it is
often useful to see the previously chosen cursor position as you select the next one. This can
be accomplished with cursor(xrange) which will show a stationary vertical line at the
previously selected cursor point (or, if you explicitly set cursor x yourself, that value will
be used) and also show a vertical line that moves with the mouse. Similarly, for selecting a y-
range, cursor(yrange) will draw a stationary horizontal line at the value set by cursor y
as well as a horizontal line that moves with the mouse.

The zoom() command will allow you to select a region on the current plot window to
“zoom in” on. This will first show the full-length cross-hair, as from cursor(crosshair),
until the mouse is clicked, then show a box with one corner at the first selected point and the
opposite corner that follows the cursor until the mouse is clicked again. At that point, the
window will be zoomed to this selected box. Using zoom(nobox) will suppress the drawing
of the cross-hair and “zoom box”, showing only the normal cursor plus sign.

You can get the resulting x- and y-coordinates of corners of the selected zoom box by using
zoom(show). This will print out two lines of the form

5 PLOTTING WITH IFEFFIT 37

Table 8: Typical PGPLOT device labels and their meaning. Note that several of these are re-
stricted to a single platform, and that other plotting devices may be available on some platforms.

Device Name Platforms Description

/null all none – no plot will be drawn
/ps all black-and-white Postscript file, portrait mode
/vps all black-and-white Postscript file, landscape mode
/cps all color Postscript file, portrait mode
/vcps all color Postscript file, landscape mode
/gif many GIF file, portrait mode
/vgif many GIF file, landscape mode
/png many PNG file
/tpng many PNG file with a transparent background
/xwindow Unix/X X-window screen
/xserve Unix/X X-window screen, persistent plot frame
/gw Win32 GrWin graphics screen
/aqt Mac OS X Mac Aquaterm (non-X) screen

cursor: x = 1.03020 , y = 0.001020
cursor: x = 4.30290 , y = 0.963039

that will contain the limits of the zoomed plot window.
IMPORTANT NOTE: On Windows systems these variations on the cursor lines and “zoom

box” are not working. This is under investigation.

5.7 Graphics Devices

PGPLOT, and therefore IFEFFIT, uses the concept of a plotting device to distinguish different
output forms. Depending on how PGPLOT was installed, there can be several different devices,
including output to the screen (possibly using different screen plotting libraries) and graphic
image files suitable for making hardcopies or including in other documents. The list of devices
typically available is given in Table 8. To see the available devices for any installation of IFEF-
FIT, you can inspect the string $plot devices, which will contain a simple space-delimited
string of device names as given in Table 8.

Ifeffit> print $plot_devices
/gif /vgif /png /tpng /null /ps /vps /cps /vcps /xwindow /xserve

The currently selected device is contained in $plot device. For each platform, at least one
interactive plotting screen device is available. Normally one of these is the default plotting
device, so that plots are ’live’ and interactive. The following sections describe several of the
plotting devices in details and how to customize the settings for them.

5.7.1 X-Windows Graphics

For Unix (including Mac OS X), the X Windows library is well supported by PGPLOT and
IFEFFIT. To use IFEFFIT on an Unix/X window system, you’ll need to set two environmental
variables. First, the variable PGPLOT DIR gives the directory location of the PGPLOT library

5 PLOTTING WITH IFEFFIT 38

(probably /usr/local/pgplot/). Second, the variable PGPLOT DEV sets the default plotting de-
vice. To draw to the X window, this should be set to either ‘/XSERVE’ or ’/XWINDOW’. In
c-shell and derivatives, this would be done like this (possibly put in the .cshrc file):

csh syntax
setenv PGPLOT_DIR /usr/local/pgplot/
setenv PGPLOT_DEV /XSERVE

In bash and ksh shells, this would look like this (possibly in the .profile file):

bash syntax
PGPLOT_DIR /usr/local/pgplot/
PGPLOT_DEV /XSERVE
export PGPLOT_DIR
export PGPLOT_DEV

The ’/XWINDOW’ and ’/XSERVE’ devices look identical, but there is one important dif-
ference between them. The ’/XWINDOW’ plot window will disappear when you leave IFEFFIT,
while the ’/XSERVE’ plot window will remain plotted until explicitly killed by your window
manager (say, by clicking the little X button). If after leaving IFEFFIT you start another IFEF-
FIT session (possibly on a different machine) that same plot window will be used, though two
concurrent IFEFFIT sessions will not use the same window.

In addition to the choice of X window type, there are a few other X-window settings for
PGPLOT that you may way to customize in your .Xdefaults or .Xresources file. The
two most important settings are:

pgxwin.server.visible: false
pgxwin.Win.geometry: 610x377

The first of these suppresses a little X-server window that pops up. The second sets the initial
window geometry in pixels. Of course, you can resize it, but this will set it to a decent size to
begin with. Finally, the X-Windows device has a tendency to use up the X color map, which
causes color flashing, especially on machines with older video cards, and especially when other
color-intensive programs are running. If this happens, try limiting the number of colors that
PGPLOT can set aside:

pgxwin.Win.maxColors: 64

did the trick on my old laptop.

5.7.2 GrWin Graphics for Win32 systems

For Win32 users (that is, Microsoft Windows NT 4.0, 95, 98, 2000, ME, and whatever else they
come up with), the GrWin graphics used by IFEFFIT are fairly straightforward to use. Cut and
Paste to the Windows clipboard works, so importing graphics into documents is easy.

For most users, the GrWin graphics are set-up when the icons to run the command-line
program ifeffit.exe or one of the GUIs. In general, using the GrWin graphics requires
setting the environmental variable PGPLOT DEV to /GW and the environmental variables PG-
PLOT DIR and IFEFFIT DIR to point to the directory of the IFEFFIT installation, and add this
directory to the system PATH. These setting can be done through the “normal setting of en-
vironmental variables”: autoexec.bat for older versions of Windows, and through the Control
Panel or system registry for Windows NT and later.

5 PLOTTING WITH IFEFFIT 39

Alternatively, These settings can be encapsulated into a batch file which runs the IFEFFIT

executable program itself. The Windows distribution of IFEFFIT includes such batch files. At
this writing, the Windows version of IFEFFIT supports the GrWin, Postscript, and GIF devices.

5.7.3 Aquaterm Graphics for Mac OS X

On Mac OS X, IFEFFIT can be built with X Windows graphics, in which case everything in
section 5.7.1 applies. But for Mac OS X users who wish to run IFEFFIT without X Windows,
there is an alternative to plot directly to the Aquaterm. This PGPLOT device is still under active
development, and though I have seen this work, I have not myself built or used this plotting
device. I expect that this will become a fairly standard option,

5.7.4 PostScript, GIF and PNG Graphics Files

The plots generated by IFEFFIT can be saved to Postscript, GIF, and PNG files, though these
may not all be available on all platforms. The creation of hardcopy as described in this section
is an ideal job for IFEFFIT macros, as discussed in chapter 10. You’ll probably want to play with
the ’hardcopy generation’ macros once and then use them extensively without looking at them.
As with many aspects of PGPLOT, the quality is not the highest (notably, vector fonts are used,
even in the PostScript output), but the results are passable enough for many situations.

To save a plot image to a file, you need to supply a file name and the type of output device.
Thuse, to save a black-and-white PostScript version of the current plot to the file ifeffit.ps,
you would type:

Ifeffit> plot(device="/ps",file= "ifeffit.ps")

The plot device is automatically reset to the default interactive window after saving the file.
Other devices listed in Table 8 will produce different forms of output.

It must be noted that the images generated will preserve the background and foreground
color, even for black-and-white output. This means that if you’re plotting on a screen with a
black background and a white foreground (ie, white text), then the output image file will use a
lot of ink when you print it out. You almost certainly want to redraw plots with black foreground
and white background for printing:

Ifeffit> plot(device="/vps",file= "ifeffit.ps",
bg=white,fg=black)

The size of the output postscript file is set (in units of 0.001” = 25 µm) with the environ-
mental variables PGPLOT PS HEIGHT and PGPLOT PS WIDTH:

bash syntax: set PGPLOT PostScript size
PGPLOT_PS_HEIGHT 6000
PGPLOT_PS_WIDTH 4000
export PGPLOT_PS_HEIGHT
export PGPLOT_PS_WIDTH

While Postscript files are appropriate for printing and inclusion in papers, GIF and PNG
files are more widely used for Web publication. GIF files can be produced with the ”/gif” plot
device. Landscape mode GIFS are generated with ”/vgif”. As with the Postscript drivers, the
colors generated in the GIF file will be close to those on the screen, including the background
and foreground colors. The text strings, on the hand, may be rendered slightly differently than

5 PLOTTING WITH IFEFFIT 40

on the screen. The size of the GIF output file can be set in pixels with the environmental
variables PGPLOT GIF HEIGHT and PGPLOT GIF WIDTH:

cshrc syntax: set PGPLOT PostScript size
setenv PGPLOT_GIF_HEIGHT 800
setenv PGPLOT_GIF_WIDTH 1000

Due the limited quality of the GIF output, it may be tempting to create very large GIF file and
reduce it afterwards. This works reasonably well, though to be honest, I’ve had better success
with doing screen grabs of the PGPLOT window to a native bitmap and converting that to the
desired format.

PNG files are similar to GIF, though generally smaller and slightly superior in quality. The
PNG files written by PGPLOT are, however, about the same quality as the GIF output. On the
bright side, they are not burdened by use of a software patent.

6 BASIC XAFS DATA PROCESSING 41

6 Basic XAFS Data Processing

IFEFFIT is designed for processing XAFS data. Though the physical justifications for the anal-
ysis procedures are outside the scope of this Reference Manual, some details of how the com-
mands for XAFS data processing are used will be given here. This is not meant as an exhaustive
or introductory treatment – the reader is expected to know why these procedures should be done
and, to some extent, what pitfalls to avoid.

Many of the simple processes here are easily incorporated into macros, scripts, and other
programs. The GUIs for IFEFFIT are all able to automate, or at least provide forms-based
interfaces for, the basic XAFS processing described here. The goal here then is not to give
exhaustive examples for novice XAFS analysts, but to give the basic ideas of how the commands
are operated at the command-line level.

6.1 Data Manipulation and Corrections

XAFS data is generally collected in a small number of data channels (that is, arrays) and either
collected at discrete energy values or at least binned in someway into discrete energy values.
Typically, there are signals from somewhere between 2 and 20 “detectors” that are collected
at discrete energy points. The XAFS µ(E) can then be determined by simple manipulation of
these detector signals.

If that all sounds too abstract, here’s a more concrete situation. Usually, one monitors the
intensity of the x-ray beam incident on the sample (I0), and either the intensity of the x-ray
beam trasmitted through (I) or fluoresced by (If) the sample at several distinct energy values.
The XAFS µ(E) that is analyzed is then given either as µ(E) = ln(I/I0) or µ(E) = If/I0.
Of course, since I0, I , and If are imperfect measures of x-ray intensities, the validity of using
these expressions is only as good as the measure of intensities themselves.

Since much of this Reference Manual discusses the simple manipulation of data, the opera-
tions to convert measured intensities to µ(E) should be straightforward by now:

Ifeffit> read_data(file=rb_xafs.dat, group=rb,
label=’energy i0 it if’)

Ifeffit> set rb.xmu_trans = log(rb.it / rb.i0)
Ifeffit> set rb.xmu_fluor = rb.if / rb.i0

When using multiple-element fluorescence detectors, it is usually necessary to add several data
channels together to get the total fluorescence intensity. This can be accomplished simply by
adding arrays:

Ifeffit> read_data(file=med_xafs.dat, group=med,
label=’energy i0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10’)

Ifeffit> set med.if = med.f1 + med.f2 + med.f3 +
Ifeffit> set rb.xmu = med.if / med.i0

When dealing with data files with similar structures, the use of macros (see chapter 10) can
make such processing easier.

6.2 De-glitching

It is sometimes necessary to remove data points from the measured µ(E) spectra because the
measurement is obviously dominated by a systematic measurement error. A typical example of

6 BASIC XAFS DATA PROCESSING 42

this is a monochromator glitch, where a second diffraction condition is met, lowering the inten-
sity of the desired beam diffracted by the monochromator. Though there may be a temptation to
replace the offending points with “smoothed values”, it is usually best to simply remove these
points from the arrays, reflecting the fact that though you know the measuements were wrong,
you don’t know what they should have been.

Deglitching by removing a single point is possible with IFEFFIT’s syntax, if somewhat
klunky. It goes something like this:

Ifeffit> new.x = join(slice(old.x,1,badx-1),
slice(old.x,badx+1,npts(old.x)))

Ifeffit> new.y = join(slice(old.y,1,badx-1),
slice(old.y,badx+1,npts(old.y)))

where badx is the x location of the bad point (which could be found with the cursor, and then
badx = nofx(old.x,cursor x)). This is an excellent task for a macro or script, and
can be done by at least some of the data processing programs.

6.3 Pre-Edge Subtraction, Finding E0, and Normalization

The first step in processing XAFS data is typically to remove the base-line absorption and to
normalize µ(E) so that it has values ∼ 0 below the absorption edge and ∼ 1 well above the
absorption edge. In addition, an estimate of the edge position E0 is often made at this point.

IFEFFIT has two commands for these steps, both starting with arrays for energy values and
a calculation of µ(E). The pre edge() command will perform all the steps of pre-edge sub-
traction and normalization given only the input spectra. Alternatively, the bkg cl() command
will use the Cromer-Libermann calculations for the pre-edge and normalization processes, and
also give a very bad post-edge background subtraction.

The pre edge() command will find E0 from the maximum of the first derivative. This
is usually ends up being a reasonable estimate of the threshold energy, which E0 is meant
to represent. The maximum of the first derivative is also easy to define and so can easily be
compared for data from various source.

In many cases, however, you’ll want override this default value. This can be especially
important when trying to compare many data sets, where the maximum-of-the-first-derivative
may move by a point or two even for fairly good data. You can do this by explicitly telling
pre edge() what value of E0 to use, with

pre_edge(...,e0=7115.0,...)

You can also explicitly set the value of E0 in the spline() command:

spline(...,e0=7115.0,...)

The normalization

6.4 Simple XANES spectral analysis

Though not necessarily giving a complete understanding of the spectral features, a common
approach to XANES analysis is to describe the edge structure as either a sum of pre-defined
lineshapes or measured spectra from known “standards”. Pre-defined lineshapes typically in-
clude a combination of arc-tangents, Gaussian, Lorentzians, or pseudo-Voight functions.

6 BASIC XAFS DATA PROCESSING 43

6.5 Post-Edge Background Subtraction: isolating χ(k)

To fully analyze the extended fine-structure, it is traditional to isolate the fine-structure χ(k)
from the slowly-varying “background”, µ0(E). This is done

6.6 XAFS Fourier Transforms

The Fourier Transform is essential to the understanding of EXAFS.

6.6.1 Forward Fourier Transforms with fftf()

6.6.2 BackTransforms with fftr()

6.6.3 Phase-Corrected XAFS Fourier Transforms

The XAFS Fourier transform χ̃(R) is well-known to have peaks atR values considerably lower
than the neighbor distances. The difference between the peak in χ̃(R) and the neighbor distance
is typically∼ −0.5 Å. This difference is well-understood to be due to the scattering phase-shift,
the δ(k) term in the XAFS equation:

χ(k) =

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 44

7 Fitting XAFS Data with FEFF Calculations

Of course, a major point of IFEFFIT is to be able to manipulate FEFF calculations of XAFS
spectra, and especially to fit XAFS data with FEFF calculations. Though many of the details
of how this happens is discussed in XAFS Analysis with IFEFFIT , this chapter discusses the
mechanics of implementing fitting with FEFF calculations in IFEFFIT. Some familiarity with
FEFF and FEFFIT will definitely help when reading this chapter.

In order to do a FEFF fit, these things need to be done:

1. run FEFF for a model structure that is expected to resemble your system.

2. read in χ(k) data to fit to.

3. decide on the fitting space (k, R, or back-transformed k) and Fourier transform parame-
ters to use.

4. define a set of paths, including the FEFF file to use and any numerical path parameters
(S2

0 , ∆R, σ2 and the like).

5. build a fitting model to determine what should be varied in the fit, what should be held
constant, and what constraints should be put in place.

6. execute the fit.

7. inspect the results.

If you made it this far in this manual, the first three items should be fairly straightforward.
The χ(k) data can be read-in from a file or generated from the spline() command. When
using data generated from other programs, an important point is that the IFEFFIT array storing
the χ data needs to be on an evenly spaced k-array, with the first point corresponding to k = 0

and the k-grid of 0.05 Å
−1. The interp function can help align data onto this grid, with

syntax like

read_data(file = my_chi.dat, type = chi, group = unaligned)
new.k = range(0,ceil(my_chi.k),0.05)
new.chi = interp(my_chi.k, my_chi.chi, new.k)

This use of range() and ceil() guarantees that new.k will start at zero, and goes out far
enough in k, both of which are important.

Deciding on the fitting space and Fourier transform parameters depends on what your data
looks like, and what you’re trying to get from the fit. Those are important topics, but left aside
here in favor of getting through the mechanics efficiently.

7.1 Defining and Using Paths

The fit of XAFS data with FEFF calculations uses the idea of a scattering path as the basic unit of
the XAFS signal. Some approaches to XAFS analysis use the concept of a “shell” or “sphere”,
which are similar but not identical to the “path”. A shell is generally thought of as a group of
atoms, usually of the same atomic species, at roughly the same distance from the central atom.
A path, on the other hand, represents a set of atoms through which the photo-electron can scatter
from before returning to the central atom. For single-scattering XAFS the distinction is subtle,
and possibly not worth worrying about – but for multiple-scattering the difference is important,

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 45

and the approach of using scattering paths is clearly superior. The total XAFS is then just a sum
of these individual paths. A convenient aspect of this approach is that the sum can usually be
limited by path distance or to a limited set of “important” paths.

FEFF 8 calculates the XAFS contributions for each path separately. A series of files named
feffnnnn.dat is written, one for each path with nnnn replaced with a 4 digit “path in-
dex”. Starting with FEFF8, all the scattering information for all the paths is written to the
single file feff.bin. IFEFFIT can use this file directly, or you can convert it to a series of
feffnnnn.dat files with the appropriate PRINT flag in FEFF (consult the FEFF documen-
tation for details). FEFF also writes out a single file of the sum-of-paths called chi.dat, but
IFEFFIT doesn’t use this file – it makes it’s own sum-of-paths instead.

The path() command is used to define paths in IFEFFIT. The path definition consists of
a path index, the feffnnnn.dat file to use for this path, a text-string label, and a set of path
parameters which will be used to alter the XAFS for the path. The path index is an integer by
which the path will be referred in IFEFFIT. This path index does not need to be the same as the
index used by FEFF, but that is often a convenient way to label them. The syntax and keywords
for the path command are listed in section 9.25. Specifically, the keywords s02, e0, delr,
sigma2, and third give the “standard EXAFS parameters”, and should look familiar to those
who’ve used FEFFIT. There are three additional path parameters for the paths in IFEFFIT that are
arrays to give k-dependent phase-shifts and amplitudes. While these may be necessary for some
advanced analyses, or to extend the cumulant expansion, these k-dependent path parameters are
infinitely abusable and should be used with caution.

A typical path definition command would look like this:

path(index = 1,
feff = feffcu01.dat,
label = "Cu metal first neighbor",
s02 = my_s02,
delr = my_delr,
sigma2 = my_ss2,
e0 = my_e0)

This defines path #1 to be based on feffcu01.dat, and sets the path parameters S2
0 , ∆R,

σ2, and E0 to take the values of the IFEFFIT scalars my s02, my delr, my ss2, and my e0,
respectively. Actually, since the path() command only defines the path parameters, you can
use repeated calls instead of long continuation lines:

path(1, feff = feffcu01.dat)
path(1, label = "Cu metal first neighbor")
path(1, s02 = my_s02, e0 = my_e0)
path(1, delr = my_delr, sigma2 = my_ss2)

Note that the path index must be supplied for each execution of path(). Abbreviated path()
commands like this are especially convenient for redefining path parameters.

The feffnnnn.dat file is a very important part of the path definition. Each path must
have a feffnnnn.dat file associated with it. But a feffnnnn.dat file can be used for
more than one path definition – this is a useful trick in many cases, and very important for
multiple data set fits. Because of the likelihood of repeated use of feffnnnn.dat files, IFEF-
FIT keeps an internal list of feffnnnn.dat files that have been read in, and will not read in a

8 IFEFFIT requires version 5 or higher of FEFF. FEFF7 or higher is recommended for use with IFEFFIT.

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 46

feffnnnn.dat more than once. In addition, the actual feffnnnn.dat file will not be read
until it is needed. The file will not be read in when you run the path() command, but rather
when you actually need the information: either when ff2chi(), feffit() are executed
or when you ask to see information about the path with show @paths or get path().
So don’t be alarmed if the path() command executes without seeming to have read the
feffnnnn.dat file – it’s not supposed to.

When summing paths with ff2chi() or feffit(), IFEFFIT loops through each path,
and sets scalars for path index, reff, and degen corresponding to the “current path”. This
allows you to refer to reff and degen in definitions of Path Parameters and be assured that
the right value will be used for each path.

As mentioned above, the show @paths command is helpful in displaying which paths
have been defined, and what their settings are. You may also view individual paths by specifying
the path index: show @path=1will show information for path 1, while show @path=1,2,4
will show that for paths 1, 2, and 4. A typical output from executing show @paths would
look like this:

PATH 1
feff = ../feff/feffcu01.dat
id = Cu metal first neighbor
reff = 2.547800, degen = 12.000000
s02 = 0.937476, e0 = -0.867040
dr = 0.007575, ss2 = 0.003522
3rd = 0.000000, 4th = 0.000000
ei = 0.000000, dphase = 0.000000

In addition to the simple show() command you can convert path information to Program
Variables with the get path() command. This is a very simple command, taking only the
path index and a prefix to use for the names of the output scalars:

get_path(1, prefix=path1)

which will create Program Variables path1 s02, path1 e0, path1 delr, path1 sigma2,
. . . , path1 reff from the current values of the Path Parameters for that path.

7.2 Creating χ(k) data with ff2chi

Once a single path or set of paths have been defined, it is often desirable to convert them to χ(k)
data so that they can be plotted and compared to one another or to data arrays. The ff2chi()
command will do a simple sum-of-paths to give χ(k) data. This essentially mimics the final
step of FEFF, with the additional features like being able to alter any of the path parameters and
include feffnnnn.dat files from different runs of FEFF in the sum.

ff2chi() is a fairly simple command, with most of its arguments describing optional
output parameters that are usually not needed. The main argument will be a “path list”, which
is a list of path indices to sum. Building on the path definition above, the simple

ff2chi(1, group=feff)

will generate arrays feff.k and feff.chi from the path #1 defined above. If we then add a
second path, with

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 47

path(2, file = feffcu02.dat, s02 = s02,
sigma2 = {sqrt(2) * ss2}, e0 = e0)

we can add these two paths together, like this,

ff2chi(1,2, group=two_paths)

which will generate two paths.k and two paths.chi.
The path list for the ff2chi() (and feffit()) command can be a simple list like

“1,2,3,4”, or use a dash like “1-6”, or some combination of both, like “1, 3-8, 10, 100-105”. Be
warned though that a path listed twice will be used twice.

7.3 Building a Fitting Model

Now for the tricky part. Like it’s predecessor FEFFIT, the fitting of XAFS data in IFEFFIT is
general and flexible, allowing a variety of physical constraints to be imposed on the fit. This
is made possible by having the “Path Parameters” be written as a mathematical function of
variables and scalars.

In many cases, the fitting model is simple and straightforward to implement. An example
would be to use one path, and adjust parameters S2

0 , E0, and ∆R. To do this, you define
variables for each of these parameters:

guess (my_s02 = 0.7 , my_ss2 = 0.021)
guess (my_e0= 0.0123, my_delr = 0.1)

and then use these variables in the path definition:

path(index = 1, feff = feffcu01.dat,
label = "Cu metal first neighbor",
s02 = my_s02,
sigma2 = my_ss2,
e0 = my_e0 ,
delr = my_delr)

In the path definition, the left-hand-side names the path parameter (say, s02) and the right-
hand-side (my s02) gives the formula used to calculate its value in terms of the variables and
other IFEFFIT scalars. Here it’s a simple formula, but it could have been more complicated.
Using max(0.5, my s02) would put a lower limit on the value of the S2

0 parameter, for
example. An important feature of this approach of having the path parameters be functions
of the variables (and not variables themselves) is that any variable like my s02 can be used
multiple times, say to set the s02 parameter for different paths. In the most general case, the
different path parameters can be quite complex functions of the set of fitting variables.

7.4 Executing a Fit

Most of the hard work (and flexibility) for the user is in building the fitting model. The actual
feffit command is actually fairly simple to execute. Like its cousin ff2chi(), feffit()
sums a list of paths and generates χ(k) data. The principle difference is that feffit() does a
fit – the defined variables are adjusted until a set of data is best-fit. That means that, in addition

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 48

to setting up the paths, you also have to set up the χ(k) data and and Fourier transform and
fitting parameters for the feffit() command.

A simple example is probably best, so here’s a relatively short but complete example of a
fit. We read in a χ(k) data file, 1 feff path, define 4 variables, set up the Fourier transform
parameters, and do the fit. It looks like this:

read in chi(k) data file
read_data(file=../data/cu_chi.dat, type=chi,group=data)

turn off all previously defined variables
unguess

give initial values for fitting variables
guess s02 = 1.0
guess ss2 = 0.0
guess e0 = 0.0
guess delr = 0.0

define a scattering path
path(index = 1,

feff = ../feff/feffcu01.dat,
label = "Cu metal first neighbor",
s02 = s02,
e0 = e0,
sigma2 = ss2,
delr = delr)

define FFT parameters
set (kmin = 2, kmax =17)
set (kweight=2, dk1 = 1, dk2 =1)
set (rmin = 1, rmax = 3)

keep initial guess , and generate chi(R) for it
ff2chi(1, group=init)
fftf(real = init.chi)

do the actual fit
feffit(1, chi= data.chi, group = fit)

show results
show @variables
plot(data.r, data.chir_mag, color = blue, xmax = 7, new)
plot(fit.r, fit.chir_mag, color = red)
plot(init.r, init.chir_mag, color = black, style=dashed)

We’ll refer to this example for the next few sections.
It’s important to note that the Fourier transform parameters are set once here, not at each

call to fftf() and feffit(). This relies on the default values for the Fourier transforms
being taken from the appropriately named scalars. The values could be set directly in each call
to fftf() and feffit(), but then you have to be more careful that the Fourier transform

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 49

parameters are the same for all of the commands. The convention here is a very convenient and
reduces chance of typing errors.

The feffit() command generates the best-fit values for the guessed variables (s02,
and so on in this example). It also generates χ̃(R) arrays for the data and best-fit – the data.r,
data.chir mag, fit.r, and fit.chir mag arrays here – so that they’re immediately
ready for plotting or saving to file.

7.5 Estimating the uncertainties in fitted variables

The uncertainties in the fitted variables will be estimated by the feffit command immediately
after the fit is done. No extra input from the user is required for this automated error analysis.
The correlations between pairs of variables will also be calculated. We’ll get to those is a bit,
after talking about the variable uncertainties.

For each variable xxx, the scalar delta xxx will be used to store the estimated uncer-
tainty for that variable. This allows you to see the uncertainties two ways. Either you can either
view the set of variables, best fit values and uncertainties together

Iff> show @variables
s02 = 0.93747649 +/- 0.02586825
e0 = -0.86703986 +/- 0.34801825
delr = 0.00757485 +/- 0.00153554
ss2 = 0.00352229 +/- 0.00015579

or you can select individual variables or uncertainties

Iff> show s02, delta_s02, e0, delta_e0
s02 = 0.937476486
delta_s02 = 0.025868253
e0 = -0.867039864
delta_e0 = 0.348018253

The estimated uncertainties reflect the goodness-of-fit statistics and include the correlations
between variables. Of course, the uncertainties are only an estimate. Also, note that if a variable
is later set with a set() or def() command, the scalar delta xxx will remain, probably
holding an irrelevant value.

As mentioned above, the correlations between pairs of fit variables are also generated by
feffit(). Because there are very many possible correlation parameters, many of which are
small and uninteresting, these values are not automatically converted to Program Variables, but
are kept internally (until the next time you execute a feffit() or minimize() command.)
To view the correlations or to convert them to Program Variables, you can use the correl()
command. A simple way to print out all the correlations is to say

Iff> correl(@all,@all,print)
correl_delr_s02 = 0.115944
correl_delr_e0 = 0.870971
correl_ss2_s02 = 0.880360
correl_ss2_delr = 0.116302

The will create the scalars shown (correl XX YY for variables XX and YY) and print out
their values. The correl() command (further discussed in section 9.5) takes its first two

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 50

arguments as the name of the variables to find the correlation of (with the special value @all
meaning to find the correlations with all variables). The keyword print means to print out as
well as save the correlation values. The minimum correlation (absolute value) to report can be
set with the min keyword – the default value is 0.05.

7.6 Goodness of Fit Parameters

In addition to doing the fit, the feffit() command generates a few scalars for the goodness-
of-fit statistics. The scalars chi square, chi reduced, and r factor will contain the
values of goodness-of-fit parameters χ2, χ2

ν , and R, respectively. The estimated uncertainties
in the data in k and R space will be stored in epsilon k, and epsilon r. Details of these
calculations are given in XAFS Analysis with IFEFFIT . In addition, the number of variables in
n varys, the number of fit iterations in &fit iteration, and the number of independent
points in the data in n idp, which is defined as

Nidp =
2∆k∆R

π

where ∆k = kmax-kmin and ∆R = rmax-rmin. This value gives an estimate of the maxi-
mum number of parameters that can be determined from the data.

The estimated uncertainties reflect the goodness-of-fit statistics and include the correlations
between variables. Of course, the uncertainties are only an estimate, and there are a couple of
things you can do to affect these estimates. By far the most important thing you can do is to
improve the fit – that’s not always that easy.

The goodness-of-fit parameters and, to a very small extent the uncertainties in the fitted
parameters, depend on the estimated uncertainty in the data (which can be specified either in k-
or R-space). Normally, feffit() automatically estimates these for you from the data itself
and you don’t have to worry about them. If, on the other hand, you want to worry about or
change these values, you can use the chi noise() command to do this. chi noise()
will estimate the uncertainty in the XAFS data χ(k) and χ̃(R) (epsilon k and epsilon r,
respectively), based on the assumption that the noise in the data can be approximated from the
high-R components of χ(k). This can be done explicitly simply as

Iff> chi_noise(chi = data.chi)

which will calculate epsilon k and epsilon r, given the current set of Fourier Transform
parameters (you can give these with the usual parameters, of course). If this default calculation
for the uncertainty in the data is not good enough for your needs, you can explicitly specify the
value of epsilon k or epsilon r to use in the feffit() command:

Iff> feffit(1, chi= data.chi, group = fit, epsilon_k = 0.0008)

This will alter the resulting values for chi square and chi reduced, but not r factor
or the uncertainties in the fitted variables.

7.7 Post-Fitting Tasks

feffit() will generate χ(R) for the data and total best-fit. It will not, however, generate the
back-transforms χ(k) or the χ(R) for the individual paths directly. ff2chi() will not gener-
ate χ(R) or back-transformed χ(k) either. So, depending on which set of paths (or partial sums
of paths) you’d like to see, you may want to generate the contribution from paths separately by

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 51

calling ff2chi(), and possibly fftf() several times. Such tasks are an ideal job for macros
or scripts. As a simple example of a pair of macros I use often, consider

macro makepath 1
"make chi(k) and chi(R) for a single path"
ff2chi($1, group=path$1)
fftf(real = path$1.chi)

end macro
macro showpath 1

makepath $1
plot(path$1.r, -path$1.chir_mag, $2)

end macro

This pair can then be used after a fit like this to show the data and best-fit, and the contributions
from each path:

feffit(1-3, chi= data.chi, group = fit)
newplot data.r, data.chir_mag, xmax=7
plot fit.r, fit.chir_mag
showpath 1 "color=blue"
showpath 2 "color=red"
showpath 3 "color=black,style=linespoints2"

You’ll also have to manage the writing of output files of the data and fit yourself too, as well
as log files. You may want to plot the data and fit first, or look at the variables and then try
re-defining some paths or path parameters of variables, or whatever else you can think of to get
that perfect fit. Again, using feffit() well is generally helped greatly by writing macros for
such tasks.

7.8 Additional Fitting Features of feffit

Though already somewhat complex and feature-rich, the use of feffit() described so far
really only shows the basic fitting capabilities of the feffit(). Scattering paths are defined,
what to vary and what to keep fixed in the fit is described, and the paths are summed together
until they match the data, and the results are inspected. It is by no means trivial or easy to
come up with a realistic fitting model or assess whether a fit is meaningful, but feffit() as
described so far gives you all the tools to do these tasks.

In the rest of this chapter, more advanced features of feffit() are described. The features
include the ability to refine the background (µ0(E)) parameters at the same time as the structural
model, the ability to include additional knowledge about the physical parameters of the systems,
and the ability to create and fit a model describing more than one data set at a time. I call these
features “advanced”, but most of these features are very easy to use, especially when compared
to the rather large undertaking of building up a simple fitting model. That is to say that although
these features may seem like “advanced topics”, and so best left alone by the beginner, they
can, in fact, help greatly in assessing the quality and reliability of many fits, and should be kept
in mind for many analyses, even by fairly new users. These abilities are being built-in to the
ARTEMIS GUI program, and I heartly recommend trying these features.

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 52

7.8.1 Including Background Refinement

It is often desirable in XAFS analysis to understand how the background absorption function
effects or is affected by the structural fitting parameters. Trationally, this has been difficult to do,
as background removal and parameter fitting have been completely separated. Though IFEFFIT

still separates these procedures, the feffit() command can be used to modify background-
like parameters for χ(k) at the same it modifies structural parameters. This option is very easy
to add to a fit: simply add the argument do bkg = true to feffit():

Iff> feffit(1, chi= data.chi, group = fit, do_bkg=true)

This will automatically add several variables to define a smoothly varying spline µ0(k) (now
in k-space instead of E-space) that will be added to the model χ(k) to match your data. The
miminum R value used in the fit will be set to 0.0. The number of spline parameters will be
determined by rmin, which now takes the role of rbkg in the spline() command) so that
the spline will only be “free enough” to easily match the low-R portion (ie, those parts below
rmin) of the spectra.

The main purpose of this feature is to investigate how the background parameters are corre-
lated with the structural (or rather, traditional) fitting parameters. The additional outputs from
using this switch are a set of fitting variables bkg01 01 . . .bkg01 NN for NN background vari-
ables. The uncertainties in these variables and the correlations between these and the traditional
fitting parameters will be available as normal. Note that this feature can greatly increase the
number of fitting variables and therefore slow down the fit. In addition to adding the bkg01 NN
fitting variables, the do bkg switch will also cause the output of additional array, fit.kbkg
which will contain the additional background function, µ0(k) added to the model in order to
match the data.

7.8.2 Constraints and Restraints in Fitting

The amount of information available from XAFS is limited, and there is often a fair amount
known about the system before you even collect XAFS on it. Because of this, the ability to
include some prior knowledge about the physical parameters describing the system can be very
important to a successful analys. As a first step, you need to be able to impose relationships
between path parameters affecting the fit, for example to say that e0 should be the same for all
paths, or that delr of one path should be related to that of another path. Up to now, we’ve only
discussed imposing constraints between parameters, using the def() command as discussed
in section 3.3 to define an exact mathematical relationship between two or more parameters.

Sometimes, however, our prior knowledge is not exact and it desirable to impose inexact
knowledge or preferences on the fit. This can be easily accomplished with a restraint. Whereas
as constraint is a hard, exact relationship imposed on the fit, a restraint is a softer relationahip
imposed on the fit. I’ll avoid an in-depth discussion of restraints in XAFS analysis here, in favor
of describing how to do them with IFEFFIT. A restraint is essentially a scalar to be added as an
additional element of the vector for the least-squares minimization. To make this happen, you
need to define the restraint condition expressed as a scalar value that you would like minimized
in the least-squares fit of the data, and then to identify this scalar with the restraint keyword
in feffit(). A simple (if not altogether useful) example would be to impose a restraint that
a distance R should be near some value expected from other information:

set r_expect = 2.5400
set weight = 0.01

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 53

def res1 = (reff + delr - r_expect) / (weight)
feffit(1, chi= data.chi, group = fit, restraint=res1)

The fit will add the restraint value defined by res1 to the normal sum-of-squares of the differ-
ence between data and fit. An important concept here is the relative weight (represented here
with the imaginitively named scalar weight) between restraint condition and the normal fit to
the data. This topic is left for later discussion.

7.8.3 Multiple-k-Weighting

As we’ll see in the next section, IFEFFIT can simultaneously fit more than one data set at a time.
In the FEFFIT program, one early and very common use of this feature was to fit the same data
set with more than one k-weight at a time. This is an important ability, as simultaneous fits with
more than 1 k-weight can significantly reduce the correlation between the EXAFS parametersR
and E0 and between NS2

0 and σ2. This ability is so important that it is implemented in IFEFFIT

directly, without the need to use the more complicated mechanism of multiple data-set fits.
To fit with only one k-weight at at time, you simply give the k-weighting power with the

kweight keyword: feffit(...,kweight=2,...), or rely on the previously defined
value of the scalar kweight. To fit with more than one k-weight at at time, you simply give
repeated values of kweight, as in

Iff> feffit(1, chi= data.chi, kweight=2, kweight=0, kweight=4)

which will cause the fit to use k-weights of 0,2, and 4 at the same time. Up to 5 k-weights can
be used simultaneously. You must list all the k-weights explicitly, however, and the value in the
kweight scalar will not automatically be used.

When fitting with multiple k-weights, the order of the listed k-weights only matters for the
weight of the automatically created output χ̃(R) arrays. These will be formed using the first
k-weight listed. Of course, to get arrays for the other k-weights, you can also construct your
own output arrays using ff2chi() and fftf() as described in section 7.7.

7.8.4 Simultaneous Fitting of Multiple Data Sets

A very important feature of IFEFFIT is ability to simultaneously fit more than one data set at a
time. To be honest, unlike most of the features above, this really is something of an advanced
topic, and you should probably be fairly well-acquainted with using the feffit() command
or with using the older FEFFIT program before trying this yourself. As discussed in the previous
section, fitting multiple data sets while only varying the k-weighting is no longer necessary in
IFEFFIT.

The key concept in simultaneously fitting multiple sets of data is pose the fitting model
to the set of spectra, not to individual spectra. This can greatly change the physically model
imposed. Nonetheless, even for simple data, the simultaneous analys of multiple data sets can
be valuable, as the two key non-structural XAFS Path Parameters (namely, S2

0 andE0) can often
be asserted to be the same for a set of data that has been measured under similar experimental
conditions and that is carefully aligned in energy.

To fit more than one data set at a time, you simply give a series of feffit() commands
for fits to each of the individual data sets, while identifying each data set as unique, and giving
the total number of data sets to be simultaneously fit. The actual fit will not actually be done
until all the expected fits to the individual data sets have been defined. Fitting variables, path

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 54

indices, and all program variables are globally available, and can be shared between the models
for the different data sets 9. Since all path definitions are visible to all fits, you may have to
define different paths that are very similar to one another for fits to different data sets.

A simple example will illustrate this. We’ll stick with Cu metal, and fit the data for 3
different temperatures simultaneously. In fact, we’ll use the Einstein model for σ2, and vary
the Einstein temperature in the fit instead of the individual sigma2 parameters. For those
with experience using FEFFIT for multiple-data-set fits, the example shown below should look
familiar.

The paths for each data set are defined separately: even though they really use the same
feffnnnn.dat file, the values of the Path Parameters delr and sigma2 may be differ-
ent. In fact, each of these parameters is taken to be temperature dependent: delr is linear in
temperature and sigma2 is calculated from the Einstein model. Each feffit() command
includes data set to identify each data set , and data total to tell how many total data
sets there will be. The fit is not really done until data total is equal to the total number of
defined data sets – in this case 3.

9For those of you with experience with FEFFIT, the concept of the “local” variable does not exist in IFEFFIT. All
variables are truly global.

7 FITTING XAFS DATA WITH FEFF CALCULATIONS 55

simultaneous fit to 1st shell XAFS for Cu at 10K,
50K, and 150K using einstein model for sigmaˆ2

guess (s02 = 0.9, e0 = 3.5)
guess (alpha = 0.0, beta = 0.00, theta = 240)

rmin = 1.60 , rmax = 2.75
kmin = 1.5 , kmax = 18.5
dk = 1.0 , kweight = 2

read_data(file= ../data/cu10k.chi, group=dat_10, type=chi)
read_data(file= ../data/cu50k.chi, group=dat_50, type=chi)
read_data(file= ../data/cu150k.chi,group=dat_150,type=chi)

path(index = 101, feff = ../feff/feffcu01.dat,
label = "Cu metal first shell, for 10K",
s02 = s02, e0 = e0,
sigma2 = eins(10, theta),
delr = reff * (alpha + 10.0 * beta))

path(index = 201, feff = ../feff/feffcu01.dat,
label = "Cu metal first shell, for 50K",
s02 = s02, e0 = e0,
sigma2 = eins(50, theta),
delr = reff * (alpha + 50.0 * beta))

path(index = 301, feff = ../feff/feffcu01.dat,
label = "Cu metal first shell, for 150K",
s02 = s02, e0 = e0,
sigma2 = eins(150, theta),
delr = reff * (alpha + 150.0 * beta))

feffit(chi = dat_10.chi, group = fit_10, 101,
data_set=1, data_total=3)

feffit(chi = dat_50.chi, group = fit_50, 201,
data_set=2, data_total=3)

feffit(chi = dat_150.chi, group = fit_150, 301,
data_set=3, data_total=3)

show @variables, r_factor, chi_square

8 FITTING NON-XAFS DATA WITH IFEFFIT 56

8 Fitting Non-XAFS Data with IFEFFIT

Well, fitting XAFS data to FEFF calculations is OK, but sometimes you just want to fit a simple
line, polynomial, or Gaussian to some data. This can be done using the minimize command,
which gives a simple but powerful interface to a non-linear least-squares fitting routine. There
are a few implementation quirks, but this general approach is definitely sufficient to fit simple
functions to data, and to add a set of known XANES spectra to fit an unknown spectrum. This
chapter will describe the minimize command and give a few examples of its use.

When fitting data, the general idea is to minimize some function in the least-squares sense.
Usually the function to minimize is the difference between the data and a parameterized model
describing the data. This function to be minimized is sometimes called the residual of the fit.
In keeping with that spirit, the minimize function in IFEFFIT takes a residual vector that you
define, and adjusts the defined variables until this residual is minimized. An example complete
would look like this:

read_data(file=my.dat, group= data, label= "x y")
guess (a0 = 1, a1 = 2, a2 = 0.012)
fit.y = a0 + a1 * data.x + a2 * data.xˆ2
fit.resid = fit.y - data.y
minimize(fit.resid)

Here we read in the data, rename the default array names to more convenient names. The model
function fit.y is defined as a simple quadratic polynomial, with the three coefficients defined
as variables. The residual is then simply the difference of model and data, and the variables are
optimized to minimize the sum of the squares of fit.resid. Really, that’s pretty much all
there is to it. minimize is remarkably simple and powerful.

There are a few bells and whistles to the minimize command. Sometimes you’ll want to
fit a limited portion of an array, say just over some peak. Of course, you could edit the data
to only include the portion of the data you want to fit. But minimize gives an alternative to
this: you can specify the ordinate (or x-array) corresponding to the data you’re fitting, and a
minimum and/or maximum values for the x-array. In the above example, we could have said

minimize(fit.resid, x = data.x, xmin = 3., xmax=10.)

to limit the fitting range.
A fit is generally of limited use without some idea of the uncertainties in the fitted parame-

ters. Many otherwise bright people seem to ignore this, and believe they can judge the reliability
of fitted parameters by the overall quality of a fit –usually by some visual inspection. Well, a
reliable estimate of uncertainties in fitted parameters is a bit more involved than that. In general,
it’s difficult to get a reasonable estimate without a good estimate of the uncertainties in the data
itself. This is further discussed in XAFS Analysis with IFEFFIT and in standard data analysis
texts. For now, the important point is that if you have a good estimate of the uncertainties in the
data, you can use them to determine the uncertainties in the fitted parameters. To do this, you
can specify an array of uncertainties in the data – the same length as the data and residual itself,
of course. To use such an array, the uncertainty keyword will be helpful:

read_data(file=my.dat, group= data, label= ’x y dy’)
guess (a0 = 1, a1 = 2, a2 = 0.012)
fit.y = a0 + a1 * data.x + a2 * data.xˆ2

8 FITTING NON-XAFS DATA WITH IFEFFIT 57

fit.resid = fit.y - data.y

minimize(fit.resid, uncertainty = data.dy)

As with the feffit function, this will create scalars for the estimated uncertainties in the
fitted variables with names based on the variable name itself. In this case, the created variables
delta a0, delta a1, and delta a2 will hold the estimated uncertainties.

At this writing, restraints and multiple-data-set fits are not supported in minimize().
This will probably change in the future.

9 COMMANDS 58

9 Commands

This chapter lists all the commands available to IFEFFIT. As discussed in section 3.6, the basic
syntax for IFEFFIT commands is

Iff> command(key = value, key = value, key = value, ...)

That is, each command recognizes a set of command arguments, usually given as keyword/value
pairs, where the keyword itself determines what type of variable will be read from the value
field, and what the command will do with that value. Some commands also use simple lists
(comma delimited, but without the form key = value) for some or all of their input arguments.

Some commands read default values for their command parameters from the global set of
Program Variables. Such default values are always read before the keyword/value arguments
are read, so that explicitly using the corresponding argument will always overwrite the default
value. Many commands will write or change output values (scalars, arrays, and/or strings) to
the global set of Program Variables.

For each command, the following sections will list these attributes: ‘

Description: gives a brief description of the command. This description does not include
much information about the algorithm used or when the use of the command would be
appropriate for EXAFS analysis.

Input Program Variables: lists the Program Variables read as the default values of the
command parameters.

Keywords/Values: describes the keywords for the command parameters, usually with a ta-
ble of keywords, default program variable used for input, default value (if not given and
default program variable is not set), and a description of the parameter (Keyword, Vari-
able, Default, and Description respectively). Many commands have default keywords
for the first few keywords – these are indicated by a leading superscript: 1file would
mean that file was the default for the first keyword.

Output Program Variables: lists and describes the program variables that are created or
modified. When arrays are created, they are listed with the generic group name $GROUP,
which will be substituted by the current value of $group.

Notes: gives some additional information on the command, typically pointing out the un-
usual program variables used.

Examples: lists one or more examples of this command, though not necessarily using every
feature.

See also: lists similar commands and other places in this Reference Guide

Many of the IFEFFIT commands use similar syntax, program variables, and conventions
for their command arguments. This is especially true for the input and output of scalars and
data arrays, and for parameters used in background removal and Fourier transforms. To this
end, and for the sake of brevity and coherence, the glossary in Appendix A contains more
detailed description of the common program variables and conventions used. Additional hints
can usually be found in the Notes: section.

9 COMMANDS 59

9.1 bkg cl

Description: Use values of x-ray scattering factors derived from the Cromer-Libermann
tables to estimate the pre-edge and normalization constant for XAFS data. The tabulated
values for f ′′(E) are modified by multiplying by a constant and adding a quadratic
polynomial in energy so that they best match the input XAFS data µ(E).

Input Program Variables: $group.

Keywords/Values:

Keyword Variable Default Description
1energy energy array name
2xmu xmu array name
3z atomic number for element
group $group group name for output arrays
e0 E0, the energy origin
width energy convolution width for calculated µ(E)
edge step Edge Step
pre1 -200. pre-edge line lower limit
pre2 -50. pre-edge line upper limit
norm1 100. normalization line lower limit
norm2 300. normalization line upper limit
norm order 2. order of normalization polynomial
find e0 F flag to force finding E0

interp quad method to use for data interpolation

Output Program Variables: Scalars: e0, edge step, pre1, pre2, norm1, norm2,
pre slope, pre offset, norm c0, norm c1, norm c2, $group.

Arrays: $GROUP.pre, $GROUP.norm, $GROUP.k, and $GROUP.chi for the data
and $GROUP.f2, $GROUP.f2pre, and $GROUP.f2norm for the calculation.

Notes: The Cromer-Libermann calculations have a sharp jump in f ′′(E) at the absorption
edge which generally needs to be broadened (here, by using width, in eV) to match
µ(E) data.

The output pre-edge subtracted muE ($GROUP.pre and $GROUP.norm for the nor-
malized version) are probably the most useful – while $GROUP.k and $GROUP.chi
may be completely useless. The output arrays for the calculation are chosen to match
the input µ(E) data ($GROUP.f2) and the pre-edge subtracted ($GROUP.f2pre) and
normalized ($GROUP.f2norm) data.

Examples:

Iff> bkg_cl(data.energy,data.xmu, z = 29)

See also: f1f2(Section 9.11), spline(Section 9.41), pre edge (Section 9.31).

9 COMMANDS 60

9.2 chi noise

Description: Estimates the measurement uncertainty of XAFS data. The estimates are made
simply from the RMS value of the high-R range of χ(R), under the assumption that the
EXAFS has died out substantially above 15Å or so.

Input Program Variables: FT parameters kmin, kmax, kweight, dk1, dk2, $kwindow,
and $altwindow.

Keywords/Values:

Keyword Variable Default Description
1chi array of χ data to estimate noise of.
k array of k data.
group $group group name for arrays.
kmin kmin 0 FT parameter
kmax kmax 0 FT parameter.
dk1 dk1 FT parameter.
dk2 dk2 FT parameter.
dk sets both dk1 and dk2.
kweight kweight FT parameter.
kwindow $kwindow FT parameter.
altwindow FT parameter.
rwgt1 15. lower R bound of high R range.
rwgt2 25. upper R bound of high R range.

Output Program Variables: epsilon k will contain the estimated uncertainty in χ(k),
and epsilon rwill contain the estimated uncertainty in χ(R). kmin, kmax, kweight,
dk1, dk2, and $group will be updated.

Notes: In practice, chi noise is rarely used directly, because feffit will automati-
cally run this for you. It is sometimes useful to understand how the uncertainties are
estimated.

Examples:

Iff> chi_noise(data.chi,kmin=2,kmax=15,dk=1,kweight=2)

See also: feffit(Section 9.12).

9 COMMANDS 61

9.3 color

Description: Manipulate the plotting color table. The color table is used to set the default
colors for the traces (x-y pairs) in a plot as well as the background, foreground and grid
colors. Note that colors on screen will not be affected until plot is re-executed.

Input Program Variables: None.

Keywords/Values:

Keyword Variable Default Description
show display color table
fg black foreground color
bg white background color
grid #CCBEE0 color of grid displayed on window
1 blue first x-y trace
2 red second x-y trace
3 green third x-y trace
4 black fourth x-y trace
5 magenta fifth x-y trace
...

...

Output Program Variables: None.

Notes: The foreground color will be used for the outer box, tick marks, and all text on plot.
The list of named colors can be found in the file rgb.txt in the PGPLOT installation
directory.

Examples:

Iff> color (fg = white, bg = black)
Iff> color (1 = red, 2 = ’#33EEBB’)

See also: linestyle(Section 9.19),plot(Section 9.27), section 5.3.

9.4 comment

Description: Write a comment line to the command history buffer.

Input Program Variables: None.

Keywords/Values: None.

Output Program Variables: None.

Examples:

Iff> comment ’this next part requires four hands to play’

See also: history(Section 9.18).

9 COMMANDS 62

9.5 correl

Description: Converts selected values from the correlation matrix of fitting variables into
named program variables.

Input Program Variables: correl min.

Keywords/Values:

Keyword Variable Default Description
1x name of first fitting variable
2y name of second fitting variable
out (see notes) scalar name for result
min correl min 0.05 minimum correlation to report
print F flag to print correlation values
save T flag to save correlation values to scalars
no save F flag to NOT save correlation values to scalars

Output Program Variables: None.

Notes: If the out argument is not given and if the save option is used, the output scalar
containing the correlation will be named correl xx yy for variables xx and yy.

The value @all can be used for either or both of x and y to tell the command to extract
all the correlations for that variables.

If the correlation value requested is smaller than the minimum reportable correlation,
then nothing is printed or saved.

Examples:

Iff> correl(x=e0,y=delr_1,print,no_save)
correl_e0_delr1 = 0.870124

Iff> correl(x=e0,y=delr_1,save,min=0.2)
Iff> print correl_e0_delr_1

correl_e0_delr1 = 0.870124

Iff> correl(x=e0,y=@all,print,min=0.6)
correl_e0_delr1 = 0.870124

See also: feffit(Section 9.12), minimize(Section 9.23).

9 COMMANDS 63

9.6 cursor

Description: Select a point on the graphics screen, and get its x and y values. The point
is typically selected with a left-click of the mouse button. The program will wait until
the point is selected before continuing. Since the program will do nothing until input is
given, it is recommended that macros, scripts, and programs inform the user that input
is expected.

Input Program Variables: None.

Keywords/Values: The following flags can be given to customize the behavior of cursor():

Keyword Description
show print output string after selection
last pos start cursor at previously selected position
cross-hair show cross-hair over full plot window
horiz show horizontal line over full plot window
vert show horizontal line over full plot window
xrange see section 5.6
yrange see section 5.6

Output Program Variables: cursor x, and cursor y contain the x and y positions of
the cursor, respectively.

Notes:

Examples:

Iff> cursor(show)
cursor_x = 2.05795 , cursor_y = -3.34442

See also: plot(Section 9.27), zoom(Section 9.46), Section 5.6.

9 COMMANDS 64

9.7 def

Description: define a Program Variable. In contrast to set(), def() remembers the defi-
nition (ie, the mathematical formula) of numerical Program Variables. This is especially
useful for complex math expressions used in non-linear least squares fits.

Input Program Variables: None.

Keywords/Values: The keyword is taken as the name of the variable to be assigned, and
the Value is taken as the mathematical expression to use for the definition.

Output Program Variables: None.

Notes: def() is the default command and so is optional. That is, simply typing a = b is
equivalent to def a = b.

Examples:

Iff> def (b = a + 1, c = 100 * sqrt(b))
Iff> def my.chik = my.chi * my.kˆkweight

Note that both b and c will change if a changes, and that my.chik will automatically
update when kweight changes.

See also: set(Section 9.39), sync(Section 9.42).

9 COMMANDS 65

9.8 echo

Description: echo a text string to the screen, without any interpolation of variables. This is
mostly useful in macros.

Input Program Variables: &screen echo, which can be used to turn on and off the ac-
tual ‘echo’ing.

Keywords/Values: None.

Output Program Variables: None.

Notes: Setting &screen echo to zero will suppress the actual ‘echo’ing (see example).
Note that this will also cause all pause() commands to be ignored, which can be
useful for batch processing.

In fact, setting &screen echo to an even value will suppress the actual echo, and
setting it to an odd number will turn on the echo. This can be used in conjuction with
the log() command to fully control printing to the screen and/or the log file defined
with log(). &screen echo of 0 will suppress all printing, 1 will print to the screen
but not the log file, 2 will print to the log file but not the screen, and 3 will print to both.

Examples:

Iff> echo "here’s a comment!"
here’s a comment!

Iff> &screen_echo = 0
Iff> echo "here’s a comment!"
Iff>

See also: comment(Section 9.4), log(Section 9.21), macro(Section 9.22), pause(Section 9.26),
print(Section 9.32).

9 COMMANDS 66

9.9 erase

Description: Erase one or more Program Variables. Erasing removes the variable from
memory (as opposed to just resetting it). This is not a keyword/value command, but a
list-directed command see section 3.6).

Input Program Variables: None.

Keywords/Values: @arrays, @scalars, @strings,will erase every array, scalar, and
string. You can also erase an entire group with @group, or a path definition with
@path.

Notes: You cannot currently erase only fitting variables, or individual macros.

Output Program Variables: None.

Examples:

Iff> erase kmin, my.energy
Iff> erase @strings
Iff> erase @group = my

This first will erase the scalar kmin, and the array my.energy. The second will erase
all text strings. The third will erase all arrays in the my group.

See also: rename(Section 9.35), set(Section 9.39), show(Section 9.40), unguess(Section 9.43).

9.10 exit

Description: Exit the program.

Keywords/Values: None.

Output Program Variables: None.

Examples:

Iff> exit

See also: quit(Section 9.33).

9 COMMANDS 67

9.11 f1f2

Description: Get x-ray scattering factors f ′(E) and f ′′(E) derived from the Cromer-Libermann
tables over a specified energy range. The tabulated values can be broadened with a
Lorenztian function.

Input Program Variables: $group.

Keywords/Values:

Keyword Variable Default Description
1energy energy array name
2z atomic number for element
group $group group name for output arrays
width 0. energy convolution width.
do f1 T flag for calculating f ′(E).
do f2 T flag for calculating f ′′(E).

Notes: The width, if supplied, will be used to broaden both f ′(E) and f ′′(E).

The sign convention used for f ′(E) and f ′′(E) are the “conventional”, if somewhat
internally inconsistent version that is in wide use in crystallography. That is, f ′′(E) is a
positive quantity and f ′(E) is negative, and at an absorption edge the change in f ′′(E)
will be positive and the cusp in f ′(E) will point down.

Output Program Variables: Arrays $GROUP.f1 (for f ′(E)) and $GROUP.f2 for f ′′(E)
will be generated for each energy of the input energy array.

Examples:

Iff> f1f2(energy=cu.energy, z=29)

See also: bkg cl() (Section 9.1),

9 COMMANDS 68

9.12 feffit

Description: Fit XAFS χ(k) data to a sum of FEFF paths, optimizing a set of fitting variables
in the process.

Input Program Variables: rmin, rmax, kmin, kmax, kweight, dk1, dk2, $kwindow,
data set, data total, $fit space.

Keywords/Values:
Keyword Variable Default Description
1path list list of paths (see note 1)
chi array of χ data to fit
k array of k data
group $group feffit group name for created arrays
rmin rmin 0 Rmin: lower R bound of fit
rmax rmax 0 Rmax: upper R bound of fit
kmin kmin 0 FT parameter
kmax kmax 0 FT parameter
dk1 dk1 FT parameter
dk2 dk2 FT parameter
dk sets both dk1 and dk2
kweight kweight FT parameter
kwindow $kwindow FT parameter
altwindow FT parameter.
epsilon k epsilon k uncertainty in χ(k) data
epsilon R epsilon r uncertainty in χ(R) data (see note 2)
toler 1.e-8 fitting tolerance

data set data set 1 index of the current data set
data total data total 1 total number of data sets in fit

fit space $fit space name of space for fit (see note 3)
do real F save real part of best-fit χ̃(k)
do mag F save magnitude of best-fit χ̃(k)
do phase F save phase of best-fit χ̃(k)

do bkg F refine background spline (see note 4)
macro user macro to run at each iteration (see note 5)
restraint scalar restraint (see note 6)

Output Program Variables: data total, chi square, chi reduced, r factor,
n idp, n varys, epsilon k, epsilon r, and the above FT parameters. In addi-
tion, the estimated uncertainty for each variable will be stored in variables with names
like delta VAR. Arrays will be created (or overwritten) for the best-fit χ(k) and
χ(R): $GROUP.k and $GROUP.chi, $GROUP.chir mag, $GROUP.chir real,
$GROUP.chir imag.

Optional output arrays can be written for other parts of the complex χ̃(k) according
to the appropriate keyword: $GROUP.chi real (do real), $GROUP.chi mag
(do mag), and $GROUP.chi phase (do phase).

Notes: 1. feffit() uses a list of paths as the default argument.

2. If neither epsilon k nor epsilon r arguments are provided, feffit() will
execute chi noise() on the supplied data to get these values.

9 COMMANDS 69

3. Valid values for fit space are ’k’, ’R’, and ’Q’, with ’Q’ meaning backtrans-
formed k-space. The default is ’R’.

4. By using do bkg, the fit will add several variables to define a spline µ0(k) that
will be added to the model χ(k), and the miminum R value used in the fit will
be set to 0.0. The number of spline parameters will be determined by rmin (now
acting in the role of rbkg in the spline() command) so that the spline will
only be “free enough” to easily match the low-R portion of the spectra.

5. A user-defined macro can be run at each iteration of the fit. This will cause serious
problems when feffit() is itself called in a macro, but works otherwise. This
makes for a convenient way to inspect a fit as it happens.

6. Up to separate 10 restraint conditions can be added.

Examples:

Iff> feffit(chi=cu.chi, 1,2,4-6, rmin=1,rmax=4,
kmin=2, kmax=18, kweight=2, dk=5,
kwindow=’Kaiser’)

See also: chi noise() (Section 9.2), ff2chi(Section 9.13), minimize(Section 9.23),
path(Section 9.25), Chapter 7.

9 COMMANDS 70

9.13 ff2chi

Description: Sum a set of FEFF paths to generate χ(k). The paths must be defined by the
path() command.

Input Program Variables: None.

Keywords/Values:

Keyword Variable Default Description
1path list list of paths
group feff group name for created arrays
kmin 0. kmin for output arrays
kmax 20. kmax for output arrays
s02 1. overall scale factor for χ(k)
sigma2 0. overall σ2 for χ(k)
do real F save real part of χ(k)
do phase F save phase-shift of χ(k)
do mag F save magnitude of χ(k)
do all F save all optional output

Output Program Variables: Arrays for k and χ(k) will be written to $GROUP.k and
$GROUP.chi.

Optional output arrays can be written for other parts of the complex χ̃(k) according
to the appropriate keyword: $GROUP.chi real (do real), $GROUP.chi mag
(do mag), and $GROUP.chi phase (do phase).

Notes: Like feffit(), ff2chi() uses a list of paths as the default argument.

Examples:

Iff> ff2chi(1,2,4-9, do_phase)

See also: feffit(Section 9.12), fftf(Section 9.14), Chapter 7.

9 COMMANDS 71

9.14 fftf

Description: Forward XAFS Fourier Transform of an array. Generally used for transform-
ing from χ(k) to χ̃(R). This does a discrete Fourier Transform.

Input Program Variables: kmin, kmax, dk1,dk2,kweight, $kwindow and rmax out.

Keywords/Values:

Keyword Variable Default Description
1real array for Re[χ(k)].
imag array for Im[χ(k)].
k array of k data
group $group group name for output arrays
kmin kmin 0 kmin FT parameter
kmax kmax 0 kmax FT parameter
dk1 dk1 FT parameter
dk2 dk2 FT parameter
dk sets both dk1 and dk2
kweight kweight k-weight FT parameter
kwindow $kwindow FT window function
altwindow array for alternate FT window.

phase array phase array for phase-correction.
pc edge element name and edge symbol for phase-correction.
pc feff path index of path to use for phase-correction.
pc caps flag to use central-atom phase-shift in phase-correction
pc full flag to use full phase-shift in phase-correction

Output Program Variables: kmin, kmax, dk1, dk2, kweight, and rmax out will be
set on output.

In addition, several arrays will be created: $GROUP.win will contain the k-space win-
dow array, W (k); $GROUP.r will contain the array of r values, $GROUP.chir mag
will contain |χ̃(R)|, $GROUP.chir rewill contain Re[χ̃(R)], and $GROUP.chir im
will contain Im[χ̃(R)].

Notes: See Appendix B.

Normally, $ftf real names the χ(k) array, and $ftf imag remain unset.

If the real (or imaginary) part of the input χ(k) data does not start at k = 0, the array of
k values should be specified with the keyword k. Otherwise, the FT will be inaccurate.

Phase-corrected Fourier transforms can be done by providing a phase array – see sec-
tion 6.6.3 and Appendix B for details.

Examples:

Iff> fftf(real=my.chi, kmin = 1.0, kmax =16.0,
dk=1.0, kweight=2., kwindow= ’hanning’)

See also: fftr(Section 9.15), window(Section 9.44), section 6.6, section 6.6.3, Appendix B.

9 COMMANDS 72

9.15 fftr

Description: Reverse XAFS Fourier Transform of an array. Generally used for transform-
ing from χ̃(R) to χ̃(k). This does a discrete Fourier Transform..

Input Program Variables: rmin, rmax, dr1,dr2,$rwindow.

Keywords/Values:

Keyword Variable Default Description
1real array for Re[χ(R)].
imag array for Im[χ(R)].
r array of R data
group $group group name for output arrays
rmin rmin 0 Rmin FT parameter
rmax rmax 0 Rmax FT parameter
dr1 dr1 FT parameter
dr2 dr2 FT parameter
dr sets both dr1 and dr2
rweight rweight R-weight FT parameter
rwindow $rwindow FT window function
altwindow array for alternate FT window.

Output Program Variables: rmin, rmax, dr1, dr2, rweight, and rmax out will be
set on output.

In addition, several arrays will be created: $GROUP.rwin will contain the R-space
window array, W (R); $GROUP.q will contain the array of k values for the back-
transform, $GROUP.chiq mag will contain |χ̃(k)|, $GROUP.chiq re will contain
Re[χ̃(k)], and $GROUP.chiq im will contain Im[χ̃(k)].

Notes: See Appendix B.

rweight sets the R-weight for the Fourier Transform, but is not traditionally used.

Examples:

Iff> fftr(real=my.chir_re, imag = my.chir_im,
rmin = 1.0, rmax =4.0, dr = 0.2)

See also: fftf(Section 9.14), window(Section 9.44), Appendix B.

9 COMMANDS 73

9.16 get path

Description: Convert Path Parameters from a FEFF path into regular program variables.

Input Program Variables: None.

Keywords/Values:

Keyword Description
1path Path index.
2group group name for arrays and prefix for scalar names.
do arrays flag to create arrays

Output Program Variables: The scalar values of the Path Parameters s02, e0, ei, delr,
sigma2, third, fourth, degen, and reff, will be written to variables PREFIX s02,
PREFIX e0, PREFIX ei, . . .PREFIX reff where PREFIX is the given path prefix.

If do arrays is set, the arrays from the feffnnnn.dat file will be turned into IFEF-
FIT arrays, with names PREFIX.k, PREFIX.amp, PREFIX.phase, PREFIX.caps,
PREFIX.rep, and PREFIX.lambda. These arrays are on a non-uniform and fairly
sparse k-grid, which can be interpolated onto a uniform k-grid.

Notes: The default prefix for path NNN is pathNNN. That is, the default prefix for path
1 is path001.

Examples:

Iff> get_path(2)
Iff> show path002_reff, path002_s02

path001_reff = 3.6032000
path001_s02 = 0.9300000

See also: feffit(Section 9.12), ff2chi(Section 9.13), and path(Section 9.25).

9.17 guess

Description: Define a fitting variable, and set it’s initial value.

Input Program Variables: None.

Keywords/Values: None.

Output Program Variables: Keywords for guess are interpreted as names of numeric
scalars. The Values are interpreted as math expressions, evaluated upon definition to
give the initial value of the variable.

Several Keyword/Value pairs can occur together. The parentheses are optional.

Examples:

Iff> guess (x = 1. , y = 2.00)
Iff> guess z = y * sqrt(2)

See also: set(Section 9.39), sync(Section 9.42), feffit(Section 9.12), minimize(Section 9.23),
unguess(Section 9.43).

9 COMMANDS 74

9.18 history

Description: Open a file to record a “history” of IFEFFIT commands as they are executed.

Input Program Variables: None.

Keywords/Values:

Keyword Variable Default Description
1file name of history file.
off flag to turn off history recording.

Output Program Variables: The variable $historyfile is updated to name the current
(or most recently used) history file.

Notes: The formal syntax for setting variables is recorded. This reflects the fact that the
commands recorded are those actually executed. Certain commands (such as the record-
ing of macros and history itself) are not recorded.

The history file is not guaranteed to be readable until after IFEFFIT has been exited, or
until the recording has been explicitly turned off with a history(off) command.

Examples:

Iff> history(ifeffit.his)
Iff> comment "Here’s a comment"
Iff> a = 1.22
Iff> b = a * 8
Iff> history(off)

This will create a file ifeffit.his, and then fill it with the following lines:

Here’s a comment
def (a = 1.22)
def (b = a * 8)

See also: comment(Section 9.4), load(Section 9.20).

9 COMMANDS 75

9.19 linestyle

Description: Manipulate the table of plotting linestyles. The linestyle table (like the color
table) is used to set the default linestyles for the traces (x-y pairs) in a plot.

Input Program Variables: None.

Keywords/Values:

Keyword Variable Default Description
show display linestyle table
1 solid first x-y trace
2 solid second x-y trace
3 solid third x-y trace
...

...

Output Program Variables: Valid values for the linestyles are: solid, dashed, dotted,
dot-dashed, pointsN and linespointsN (both for N = 1,2,3,. . .).

Like for the color table, the linestyle table is affected by explicitly setting the linestyle
of a trace with the plot() command.

Examples:

Iff> linestyle(1=solid, 2 =dashed)

See also: color(Section 9.3), plot(Section 9.27).

9.20 load

Description: Load a file of IFEFFIT commands and execute them. The file loaded can have
any valid filename, and can itself load other files. This is especially useful in conjunc-
tion with the history command, and for writing macros.

Input Program Variables: None.

Keywords/Values: None.

Output Program Variables: None.

Notes: load()’s can be nested, so that loaded files can themselves contain load state-
ments.

Examples:

Iff> load My_macros.iff

See also: history(Section 9.18), macro(Section 9.22), Chapter 10.

9 COMMANDS 76

9.21 log

Description: Control the writing of commands and screen output to an external log file.

Keywords/Values:
Keyword Variable Default Description
file log file name to open and write to
close close log file

Output Program Variables: None.

Notes: A log file cannot be named close.

If a file named file.log exists when executing log(file=file.log), that file
will be replace with the new log file.

Examples:

Iff> log(file = analysis.log)
Iff> log(close)

See also: echo(Section 9.8).

9.22 macro

Description: Define a macro – a sequence of IFEFFIT commands to be executed later by
simply typing the macro name (and optional parameters). Macro definitions end with
the line ‘end macro’, and can call other macros.

Input Program Variables:

Keywords/Values: None.

Output Program Variables: None.

Notes: Macros may take positional parameters, which are interpreted as text strings. In the
macro definition, these parameters are referenced by the special string variables $1, $2,
. . . , $9.

Examples:

macro prex
read_data($1, type = xmu, group = my)
pre_edge(my.energy, my.xmu)
show e0, edge_step

end macro

This macro will read in a µ(E) data file, subtract a line for the pre-edge, and plot the
normalized, pre-edge subtracted µ(E) as a function of energy relative to E0. It would
be called like this:

Iff> pre my_data.xmu

Note that one parameter is used in this macro, and that it will continually overwrite the
arrays in the ‘my’ group.

See also: macro(Section 9.22), Chapter 10.

9 COMMANDS 77

9.23 minimize

Description: Minimize an array in the least squares sense, by adjusting the values of the
fitting variables. This gives a simple and flexible way to fit general data to a fairly
simple models.

Input Program Variables: None.

Keywords/Values:

Keyword Variable Default Description
1array residual to be minimized
x x-array associated with array
uncertainty array of uncertainties in residual
xmin low-x value for fit range
xmax high-x value for fit range
toler 1.e-8 fitting tolerance
restraint scalar fitting restraint

Output Program Variables: chi square, chi reduced. For each variable XXX, the
variable delta XXX will be given it’s estimated uncertainty.

Notes: The array named by x is optional, and is necessary only if xmin or xmax are given.
The array given by uncertainty is optional as well.

Currently, only 1 restraint scalar can be added.

Examples:

Iff> guess (a = 1, b = 0)
Iff> my.resid = my.data - (a * my.x + b)
Iff> minimize(my.resid)

See also: feffit(Section 9.12), Chapter 8.

9.24 newplot

Description: Draw a new plot on the graphics device (usually the screen).

Input Program Variables: None.

Keywords/Values: Same as plot.

Output Program Variables: Same as plot.

Examples:

Iff> newplot(my.x, my.y)

See also: plot(Section 9.27), Chapter 5.

9 COMMANDS 78

9.25 path

Description: Define a FEFF path and specify the path parameters. The paths defined in this
way can be used in either ff2chi or feffit to create χ(k).

Paths are referred to by an integer index, which is a required keyword. Every path must
have an index and a feffnnnn.dat file associated with it – all other path parame-
ters are optional, taking “normal defaults” (zero for all parameters except S02 which
defaults to one).

Input Program Variables: feff file is used as the default feffnnnn.dat file.

Keywords/Values: All values are treated as text strings except for index which must be
an integer. Except for label and feff, strings for path parameters are interpreted as
math expressions, either giving a scalar or array.

Keyword Variable Default Description
1index path index, an integer used to make path lists
2feff feffnnnn.dat file to use for this path
label text string to describe path
s02 1 NS2

0 – constant amplitude factor
e0 E0 – energy shift
delr ∆R – change in path distance
sigma2 σ2 – mean-square-displacement
third C3 – third cumulant
fourth C4 – fourth cumulant
ei Ei – shift in imaginary energy term.

k array
array of k-values for k-dependent phase-shift and
amplitudes

phase array array of k-dependent phase-shift
amp array array of k-dependent amplitude factor

Output Program Variables: None.

Notes: All the numerical Path Parameters can be generalized expressions of the fitting vari-
ables and other defined Program Variables. The path() command only defines the
path, and may not even cause the feffnnnn.dat file to be read.

Examples:

Iff> path(index = 1, file = feff0001.dat, s02= 1,
sigma2 = sig2)

Iff> path(2, feff0002.dat, s02= 1, sigma2 = sig2)
Iff>
Iff> path(3, feff0003.dat, sigma2 = ’sig2 * sqrt(3)’)
Iff> path(3, delr = reff * alpha)

See also: ff2chi(Section 9.13), feffit(Section 9.12), get path() (Section 9.16),
Chapter 7.

9 COMMANDS 79

9.26 pause

Description: Write a message to the screen, and suspend the program until the user hits any
key on the keyboard. This is often useful to put in macros or load()ed files that will
perform multiple plotting tasks.

Input Program Variables: &screen echo, which determines whether messages are sent
to the screen, and &pause ignore, which sets whether or not to ignore all pause()
commands, will influence the operation of this command.

Keywords/Values: pause() takes one argument – a string that is printed to the screen
to prompt the user to ‘hit any key’. The default string is ‘-- hit any key to
continue -- ’.

Output Program Variables: None.

Notes: In order for the pause() command to actually be executed, &screen echomust
be 1 and &pause ignore must be 0. Thus, setting &pause ignore to 1 will sup-
press the command, which may be useful for batch processing or scripts.

Examples:

Iff> pause ’>> hit any key to see chi(k) <<’

See also: echo(Section 9.8), print(Section 9.32).

9 COMMANDS 80

9.27 plot

Description: The general plotting command, specifying x- and y-arrays to plot, and plot
attributes. The plot created can be either to the graphics screen or to the current output
graphics device (such as a postscript file).

The plot command takes a huge variety of arguments.

Input Program Variables: $plot device, $plot file, $plot xlabel,
$plot ylabel, $plot title, $group.

Keywords/Values:

Keyword Variable Default Description
1x x-array
2y y-array
group $group group name
dy array of error bar size for y
dx array of error bar size for x
xmin lower limit for x-range
xmax upper limit for x-range
ymin lower limit for y-range
ymax lower limit for y-range

color (table) color for current trace
style (table) line style for current trace
width 2 line width for current trace
bg white background color
fg black foreground (labels,axis) color
grid T flag for showing grid
nogrid flag for hiding grid
gridcolor #CCBEE0 color of grid lines

xlabel $plot xlabel string for x-axis label
ylabel $plot ylabel string for y-axis label
title $plot title string for plot title
key text of key for legend
charfont 1 font for text strings
charsize 1.5 font size for all text strings
labelsize 1.5 font size for axis labels and titles
markersize 1.5 font size for point markers
textsize 1.5 font size for text labels
text text string for general label
text x x-coordinate for text string
text y y-coordinate for text string
cleartext flag to erase all ”text” labels

file $plot file file name for non-screen outputs
device $plot device name of plot device
new flag for not overplotting
reset flag to reset all plot attributes

Output Program Variables: $plot device, $plot file, $plot xlabel,
$plot ylabel, $plot title. If a plot attribute (color, style) for a particu-

9 COMMANDS 81

lar trace is altered, it will be remembered until a ‘reset’ is issued.

Notes: Further details are in Chapter 5.

The default color and linestyle are dictated by internal tables.

Examples:

Iff> plot(my.x, my.y, color=green,xmin= 0,
title = ’Y v. X’)

See also: color(Section 9.3), cursor(Section 9.6), newplot(Section 9.24),
zoom(Section 9.46), plot arrow() (Section 9.28), plot marker() (Sec-
tion 9.29), plot text() (Section 9.30), Chapter 5.

9.28 plot arrow

Description: Add an arrow or line to the current plot.

Input Program Variables: None.

Keywords/Values:

Keyword Description
1x1 x-coordinate of arrow tail
2y1 y-coordinate of arrow tail
3x2 x-coordinate of arrow head
4y2 y-coordinate of arrow head
clear erase all arrows from plot
no head use no arrow head
fill fill in arrow head
outline use outline of arrow head
size size of arrow head
angle angle of arrow head
barb size of arrow barb

Output Program Variables: None.

Examples:

Ifeffit> plot_arrow(x1=10, y1= 4, x2=25, y2=4, barb=2)

See also: Section 5.5.

9.29 plot marker

Description: Add a marker or symbol to the current plot. See Figure 2 for the available
symbols.

Input Program Variables: None.

Keywords/Values:

Keyword Description
1x x-coordinate of marker
2y y-coordinate of marker
3marker integer of plot marker to use
clear erase all markers from plot

9 COMMANDS 82

Output Program Variables: None.

Examples:

Ifeffit> plot_marker(x=7000,y=4,marker=1)

See also: Section 5.5, Figure 2.

9.30 plot text

Description: Add a text string to an arbitrary location on the current plot. This is equivalent
to using text x, text y, and text arguments to plot().

Input Program Variables: None.

Keywords/Values:

Keyword Description
1x x-coordinate of text
2y y-coordinate of text
3text text string to add to plot
size font size for text labels
clear erase all strings from plot

Output Program Variables: None.

Examples:

Ifeffit> plot_text(x=7025,y=0.3, text=’400 K Data’)

See also: plot(Section 9.27), Section 5.4.

9 COMMANDS 83

9.31 pre edge

Description: Calculate the pre-edge line through XAFS µ(E) data, the energy origin E0,
and the edge step.

Note that the spline command may call pre edge for you if it appears that it has
not already been called.

Input Program Variables: pre1, pre2, norm1, norm2.

Keywords/Values:

Keyword Variable Default Description
1energy energy array name
2xmu xmu array name
group $group group name
e0 e0 E0, the energy origin
edge step edge step Edge Step
pre1 pre1 -200. pre-edge line lower limit
pre2 pre2 -50. pre-edge line upper limit
norm1 norm1 100. normalization line lower limit
norm2 norm2 300. normalization line upper limit
pre slope pre slope slope of pre-edge line
pre offset pre offset offset of pre-edge line
find e0 F flag to force finding E0

Output Program Variables: e0, edge step, pre1, pre2, norm1, norm2,
pre slope, pre offset, $group, and $GROUP.pre.

Notes: The edge step will be found unless specified. E0 will be found unless specified and
in the data range.

Examples:

Iff> read_data(my.xmu, group = my)
Iff> pre_edge(my.energy, my.xmu)

See also: bkg cl() (Section 9.1), spline(Section 9.41).

9 COMMANDS 84

9.32 print

Description: Write the value of a list of Program Variable or expressions to the screen.
Because print uses list context, it does a poor job parsing complex expressions. Ex-
pressions that include spaces should be enclosed in parentheses. Alternatively, you can
enclose strings in quotes to prevent them from evaluation. This gives a reasonably flex-
ible way to format outputs.

Input Program Variables: None.

Keywords/Values: None.

Output Program Variables: None.

Examples:

Iff> print "7 * sqrt(99.11) = ", (7 * sqrt(99.11))
7 * sqrt(99.11) = 69.6878038

See also: echo(Section 9.8), show(Section 9.40).

9.33 quit

Description: Quit the program.

Input Program Variables: None.

Keywords/Values: None.

Output Program Variables: None.

Examples:

Iff> quit

See also: exit(Section 9.10).

9 COMMANDS 85

9.34 read data

Description: Read array data from ASCII column file.

Input Program Variables: $commentchar.

Keywords/Values:

Keyword Variable Default Description
1file Name of input file.
group Default group name for arrays.
type File Type to assume for array names.
label Label line to use for array names.
npts length of arrays to read.
narray number of array to read.
commentchar $commentchar # comment character for text lines.

All arrays read in will share a common group name. If not explicitly given, the group
name will be determined from the file name. The arrays read in will be named according
to conventions described in Chapter 3 and Chapter 4.

Output Program Variables: Arrays will be read in, and text strings will be read in. In
addition, $group will hold the group name used, and $commentchar will hold the
comment character used. $filetype will hold the file ‘type’, if appropriate. Most
importantly, $column labelwill hold what the colum label should have been to give
the resulting array names. That is, it will contain a space-delimited list of array suffixes.

Comment strings at the top of the data file will also be saved in text strings with names
$GROUP title 01, $GROUP title 02,

Examples:

Iff> read_data(file= My.dat, type=raw, group= my)
Iff> read_data(CuS04_002.dat, label = ’energy xmu i0’)

See also: write data() (Section 9.45), Chapter 3, Chapter 4.

9 COMMANDS 86

9.35 rename

Description: Rename one or more Program Variables.

Input Program Variables: None.

Keywords/Values: None.

Output Program Variables: None.

Notes: Use of this command can be very detrimental to effective and rational use of defini-
tions and complex fitting models. In short, the name of the variable is changed, but does
not change its definition or the definitions of the variables that depend on it. Sometimes
this is exactly what you want. Sometimes it is not.

Examples:

Iff> rename kmin kmin_save
Iff> rename my.x your.x

Iff> a = 1
Iff> b = a + 1
Iff> rename(a, c)
Iff> c = 5
Iff> print b
6.000000

Iff> rename(b, d)
Iff> c = 10
Iff> print d
11.000000

See also: erase(Section 9.9), set(Section 9.39), show(Section 9.40).

9.36 reset

Description: Reset all IFEFFIT Program Variables.

Input Program Variables: None.

Keywords/Values: None.

Output Program Variables: All Program Variables are erased, and all program settings
re-initialized.

Examples:

Iff> reset

See also: exit(Section 9.10).

9 COMMANDS 87

9.37 restore

Description: Restore a save’ed IFEFFIT session.

Input Program Variables: None.

Keywords/Values: The only argument is the name of the save file to restore. The keyword
file is optional.

Output Program Variables: All Program Variables read from the save file are updated.

Examples:

Iff> restore(my.sav)

See also: save(Section 9.38).

9.38 save

Description: Save all IFEFFIT program variables into a single file for later restoration.

Input Program Variables: All Program Variables.

Keywords/Values:

Keyword Variable Default Description
1file ifeffit.sav Name of output save file.
npad 8 WordLength for PAD numbers.
no strings F Flag to not save text strings.
no arrays F Flag to not save arrays.
no scalars F Flag to not save scalars.
no sys F Flag to not save “system scalars”.
with strings T Flag to save text strings.
with arrays T Flag to save arrays.
with scalars T Flag to save scalars.
with sys T Flag to save “system scalars”.

Notes: A wordlength npad of 8 gives at least 12 significant digits. Higher precision can
be achieved by setting npad as high as 12, which results in about 15 significant digits
– roughly at the machine resolution of most implementations of double precision. True
double precision cannot be guaranteed with this format, but 12 digits of portable data
will mask many machine differences, and is probably good enough for most applications
involving experimental data.

Output Program Variables: None.

Examples:

Iff> save(my.sav)

See also: restore(Section 9.37).

9 COMMANDS 88

9.39 set

Description: Set a Program Variable. In contrast to def, set does not remember the
definition (ie, the mathematical formula) of numerical Program Variables, but only the
value at the time of creation.

Note that def is the default command, which means that set must be done explicitly.

Input Program Variables: None.

Keywords/Values: The keyword is taken as the name of the variable to be assigned, and
the Value is taken as the mathematical expression to use for the definition.

Output Program Variables: Well, the Program Variable is set.

Examples:

Iff> set (b = a + 1, c = 100 * sqrt(b))
Iff> set my.chik = my.chi * my.kˆkweight

Note that neither b nor c will change if a changes, and that my.chik will not change
when kweight changes. Sometimes this kind of constance and predictability is exactly
what you want. For those other times, you’ll want def.

See also: def(Section 9.7), sync(Section 9.42), print(Section 9.32).

9 COMMANDS 89

9.40 show

Description: Show information about IFEFFIT Program Variables, commands, macros, and
feffit paths.

Input Program Variables: None.

Keywords/Values: The argument to show is usually interpreted as a list of the names of
Program Variables to display. In addition to the ‘normal’ Program Variables, the names
of user-defined macros can also be included. For scalars and strings, show will display
the value of these Program Variables. For arrays, the number of points and maximum
and minimum values are shown (the print(Section 9.32) command will print all the
values of an array, if that’s what you want).

show can also take a few “global” arguments to show several variables at once. All
such global arguments begin with “@”, which can be taken as a mnemonic for “all”,
and a few can take an additional argument. The table below lists the available “global”
arguments.

Argument Value What is Shown

@scalars all scalars.
@arrays all arrays.
@strings all text strings.
@variables all fitting variables, with uncertainties.
@groups all array “groups”.
@group group name all arrays in selected group.
@paths all paths for the current data set.
@path path list selected paths.
@commands all commands, with brief description.
@macros all user-defined macros.

See the examples below for syntax.

Output Program Variables: Outputs are written to the screen.

Examples:

Iff> show rmin, fit.chi
rmin = 1.30000000
fit.chi = 499 points [-0.5341341 : 0.5121385]

Iff> show @groups
data
fit

Iff> show @group=data
data.k = 499 points [0.500000E-01: 24.95000]
data.chi = 499 points [-0.1756163 : 0.1433899]

Iff> show @path=1
PATH 1

feff = feffcu01.dat
id = Cu metal first neighbor
reff = 2.547800 , degen = 12.000000
s02 = 0.934530 , e0 = 0.558189
dr = 0.000771 , ss2 = 0.003483

9 COMMANDS 90

3rd = 0.000000 , 4th = 0.000000
ei = 0.000000 , phase = 0.000000

See also: set(Section 9.39), print(Section 9.32), echo(Section 9.8).

9 COMMANDS 91

9.41 spline

Description: Calculate the background spline µ0(E) and EXAFS and χ(k) given arrays for
µ(E). This command uses the AUTOBK algorithm, described in more detail in XAFS
Analysis with IFEFFIT .

Input Program Variables: e0, rbkg, toler, nknots, kmin spl, kmax spl,
kweight spl, dk1 spl, dk2 spl, $kwindow, edge step, pre1, pre2,
norm1, norm2.

Keywords/Values:

Keyword Variable Default Description
1energy energy array name
2xmu xmu array name
group $group group name
e0 e0 E0, the energy origin
rbkg rbkg 1.0 Rbkg

toler toler 1.d-3 Fitting tolerance
nknots nknots Number of knots in spline
kmin kmin spl kmin for FFT in spline evaluation
kmax kmax spl kmax for FFT in spline evaluation
kweight kweight spl 1 k-weight for FFT in spline
dk1 dk1 spl δk1 parameter for FFT in spline
dk2 dk2 spl δk2 parameter for FFT in spline
kwindow $kwindow name of FFT window type for spline
edge step edge step Edge Step
pre1 pre1 -200 pre-edge line lower limit
pre2 pre2 -50 pre-edge line upper limit
norm1 norm1 100 normalization line lower limit
norm2 norm2 300 normalization line upper limit
eefind F flag to force finding E0

varye0 F flag to allow E0 to vary in spline fit
find step F flag to force finding of Edge Step
fnorm F flag to normalize by µ0(E).
do pre T flag to force the finding of the pre-edge
do spl T flag to force spline fit
interp quad method to use for data interpolation

Output Program Variables: $group, e0, rbkg, nknots, kmin spl, kmax spl,
kweight spl, dk1 spl, dk2 spl, $kwindow, edge step, pre1, pre2,
norm1, norm2.

Examples:

Iff> spline(my.energy,my.xmu,rbkg=1.0,kmin=0)

See also: pre edge (Section 9.31).

9 COMMANDS 92

9.42 sync

Description: Synchronize numeric Program Variables (fitting variables, scalars and arrays)
so that all dependencies are up-to-date and all values are consistent with one another.
This command is implicitly run at the beginning of commands ff2chi, feffit, and
minimize.

Input Program Variables: None.

Keywords/Values: None.

Output Program Variables: None. Well, all scalars and arrays are ‘re-arranged’.

Examples:

Iff> a = 1, b = 3, c = (a + b)/2
Iff> b = 5
Iff> show a, b, c

a = 1.00000
b = 5.00000
c = 2.00000

Iff> sync
Iff> show a, b, c

a = 1.00000
b = 5.00000
c = 3.00000

See also: ff2chi(Section 9.13), feffit(Section 9.12), minimize(Section 9.23), set(Section 9.39),
def(Section 9.7), and section 3.3.

9.43 unguess

Description: Change all guess()ed program variables to set() variables with the cur-
rent values.

Input Program Variables: None.

Keywords/Values: None.

Output Program Variables: None. Well, all fitting variables are changes to regular scalars.

Examples:

Iff> unguess()

See also: set(Section 9.39), def(Section 9.7), guess(Section 9.17), section 3.3.

9 COMMANDS 93

9.44 window

Description: Generate an XAFS Fourier Transform window, without actually doing the
Fourier transform.

Input Program Variables: kmin, kmax, dk1,dk2,kweight, $kwindow and rmax out.

Keywords/Values:

Keyword Variable Default Description
1real array for Re[χ(k)].
imag array for Im[χ(k)].
k array of k data
group $group group name for output arrays
kmin kmin 0 kmin FT parameter
kmax kmax 0 kmax FT parameter
dk1 dk1 FT parameter
dk2 dk2 FT parameter
dk sets both dk1 and dk2
kweight kweight k-weight FT parameter
kwindow $kwindow FT window function
altwindow array for alternate FT window.

Output Program Variables: kmin, kmax, dk1, dk2, kweight, and rmax out will be
set on output.

The array $GROUP.win will contain the k-space window array, W (k).

Notes: See Appendix B.

Examples:

Iff> window(real=my.chi, kmin = 1.0, kmax =16.0,
dk=1.0, kweight=2., kwindow= ’hanning’)

See also: fftf(Section 9.14), fftr(Section 9.15), Appendix B.

9 COMMANDS 94

9.45 write data

Description: Write scalars, strings, and arrays to an ASCII data file.

Input Program Variables: $group, $commentchar.

Keywords/Values: The arguments for write data are mostly interpreted as a list of Pro-
gram Variables to write to the file. The list elements can be either strings or arrays, but
(currently) not scalars. The text strings will be written first, followed by a line of mi-
nus signs, and then the arrays will be written in column format. Currently supported
keywords are:

Keyword Variable Default Description
1file Name of output file.
group Default group name for arrays.
npts number of array points to write.
commentchar $commentchar # comment character for text lines.

For writing groups of text strings, ‘globs’ are supported with the ‘*’ character. That is, a
‘*’ in the name of text string variables will be expanded so that all strings matching the
pattern will be printed. Text lines will begin with a ‘comment character’. By default,
this is ‘#’, but can be set to any two character sequence.

The maximum number of arrays that can be written to a single file is 16. Array expres-
sions are not supported.

Output Program Variables: None.

Examples:

Iff> write_data(file=out.dat, $title*, my.x, my.y)

See also: read data (Section 9.34).

9.46 zoom

Description: Zoom in on a region of the plot window. Using the cursor (typically a mouse),
click on the lower-left and upper-right portion of the plot window you wish to enlarge.

Input Program Variables: None.

Keywords/Values: The following flags can be given to customize the behavior of zoom():

Keyword Description
show print output string after selection
nobox suppress drawing of ’active zoom box’

Output Program Variables: cursor x, and cursor ywill contain the x and y positions
of the cursor for the last point chosen.

Examples:

Iff> zoom

See also: cursor(Section 9.6), plot(Section 9.27), Section 5.6.

10 MACROS IN IFEFFIT 95

10 Macros in IFEFFIT

As described so far in this Guide, IFEFFIT is definitely not suitable for the casual user. The syn-
tax is a bit fussy and cryptic, and the whole notion of a command-based system is not generally
considered ‘user friendly’. Even for the experienced user, typing at a command prompt can get
pretty tedious for repetitive tasks.

With that in mind, this chapter and the next might be the most important chapters in this
Guide, because they are all about making IFEFFIT easier to use. With the macro capability de-
scribed in this chapter, it is easy to write and customize files for “batch processing” of data.
The next chapter will extend these ideas further, and move beyond the simple macros described
here, and discusses writing full-blown application programs using IFEFFIT with real program-
ming languages like fortran, C, Perl, Python, and Tcl.

Data analysis often involves repetitious processing of data, so IFEFFIT has a simple built-
in macro capability that is easy-to-use and reasonably flexible. A macro is a named block of
IFEFFIT lines that can be executed as a single unit by typing the name of the macro. An example:

macro make_ps
plot(device="/ps",file= "ifeffit.ps")

end macro

With this definition, typing make ps at the command line would execute the two plot com-
mands, making a postscript named ifeffit.ps showing the current plot, and setting the
plotting device back to the X-window. As you can probably tell, macros are defined with the
command macro macro name . All lines up to end macro (which must be on its own line)
make up the text of the macro, and will be executed in order when the macro is invoked.

To make macros slightly more useful, you can use positional arguments to pass information
into macros. The parameters are handled as text strings, and simply inserted in the macro text
before being executed. In keeping with the IFEFFIT naming convention, and following many
shell and batch processing facilities, the parameters are named $1, $2, . . . $9. So, to make the
above macro a little more flexible, we use

macro make_ps
plot(device="/ps",file= $1)

end macro

Now, typing make ps my plot.ps at the command line will dump the current plot to a
file named my plot.ps, and you can make several different postscript files by changing the
argument.

Unfortunately the file name in parameter $1 is required by the macro, which might not be all
that useful unless you always remembered it. To help with the problem of required arguments,
you can specify default values for each argument when defining a macro, like this:

macro make_ps ifeffit.ps
"Make Postscript file of current Plot"
plot(device="/ps",file= $1)

end macro

This version of make ps will use ifeffit.ps as the default value of the first argument. So
typing make ps my.ps will make a file called my.ps, and make ps without any arguments
will write ifeffit.ps.

Notice the extra line at the top of this macro:

10 MACROS IN IFEFFIT 96

"Make Postscript file of current Plot"

This is the optional macro description, which acts as built-in documentation. If the first line of
a macro is enclosed in single quotes, double quotes, or braces, it is used as the macro description.
This line is not executed when the macro is run, but is only used to describe the macro to the
outside world. Specifically, show @macros will show all macro names, default arguments,
and description.

Here’s an example macro to automate pre-edge subtraction:

macro do_pre_edge a
"Read File, Calculate Pre-Edge, Plot, Write File"
read_data($1.xmu, type = xmu, group = my)
pre_edge(my.energy, my.xmu)
my.norm = my.pre / edge_step
$title1 = ’normalized, pre-edge subtracted data’
write_data(file = $1.pre, $title1, energy, pre, norm, xmu)

end macro

Now, typing do pre edge Data 1 would read in Data 1.xmu, calculate the normal pre-
edge parameters like E0, and the edge step, and write out the pre-edge subtracted µ(E) data (in
my.pre) to Data 1.pre. And do pre edge Data 2 would repeat these same steps on
another file.

The variables $1 through $9 are special text strings that can only be used in macros. The
contents of these strings are destroyed when the macro is exited. Within the macro, these strings
are simply substituted in place. This is an admittedly feeble system – adding string manipulation
functions and simple control structures would enhance the utility of macros, and is planned for
future versions.

Macros can be nested. Parameters passed into underlying macros are always handled by
position number, and the “argument stack” is automatically managed, which should be what
you’d expect. That is, with

macro mac1
mac2 $3 $2
print $1

end macro
macro mac2

print $1
print $2

end macro

typing mac1 A B C will print “C”, then “B”, and then “A”. As mentioned above, macro ar-
guments are interpreted as strings and are substituted in place just before execution. To specify
the argument values, then, it will often be helpful to separate them by commas, or to enclose
them in double quotes (“. . . ”) or braces ({ . . . }). Then

mac1 ‘‘As usual’’, {1}, ‘‘Here is the third argument’’

will print

Here is the third argument
1
As usual

10 MACROS IN IFEFFIT 97

The macro processing does essentially no error checking. And, again, the arguments $1
to $9 are simply inserted as text strings. So if an argument $1 to $9 is expected and is not
explicitly provided and no default is given for it in the macro definition, then a null string will
be used. If a null string is not a valid argument in some command, the command will still
be executed, occasionally with non-sensical results or error messages. If you’re working on a
complex macro, it may be helpful to ‘debug macros’ by putting the line

show @args

Note that the following

print $1, $2, $3, $4
pause == my_macro: are these parameters right? ==

may not be as helpful, since the arguments will already have been substituted in place of $1,
. . . $4.

Of course a key point of having macros is to re-use them. For that, you’ll probably want to
save your favorite macro definitions to a file and use the ’load’ command.

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 98

11 Scripting and Programming with IFEFFIT

The macro system in IFEFFIT described in the previous chapter only goes so far, and sometimes
it’s just not enough. There are several limitations to the ‘IFEFFIT language’ and to the macro
mechanism that make complex data processing difficult. The lack of conditional (if-then-else)
statements and loops (for or do) are the most notable missing features.

All of the programming capabilities missing from IFEFFIT and more are available in es-
sentially every programming and scripting language. Modern scripting languages (which are
roughly distinguished from programming languages by not having a compilation to machine
code separate from execution but rather being run directly from the text of the code) are es-
pecially attractive for such applications, as they allow quick development and execution and a
wide range of programming capabilities. Scripting languages are generally simpler to learn than
full-blown programming languages, and more flexible and forgiving of errors to boot. Scripting
languages have a proven track record as being useful for creating “wrappers” around low-lying
libraries such as the IFEFFIT library.

There are several possible general-purpose scripting languages and a few “scientific visu-
alization languages” that could, in principle, be used to extend IFEFFIT’s capabilities. Tcl/Tk,
Perl, Python, IDL, Java, VisualBasic, LabView, Matlab, and Mathematica all come to mind. At
this time, IFEFFIT works well with Perl, Python, and Tcl as well as with C and Fortran. If you
have a favorite language that is not on this list and would like to use IFEFFIT with it, please let
me know.

The interface between IFEFFIT and the various programming and scripting languages are
all quite similar. The interfaces allow you to send commands from the language just as you
would type commands at the command-line program, and also provide ways to move Program
Variables back and forth between the underlying engine and the calling program. This chapter
describes using IFEFFIT from Fortran and C, as well as Perl, Python, and Tcl. Though the basic
concepts are the same for all the languages, there are some slight differences in implementation
so as to be able to best exploit the features of the different languages. Even if you’re only
planning on using one of the scripting languages, I recommend that you read the Fortran and C
sections since it has the most complete description of the interface.

11.1 Which language to use?

If you’re unfamiliar with the world of scripting languages and are interested in getting more
out of IFEFFIT, you’re probably wondering at this point which of the scripting language to use.
Allow me to give some brief recommendations. These should be immediately be seen as the
free advice of a highly opinionated person. Oddly, I believe they are in fairly close agreement
with most others familiar with these languages.

If you already know C or Fortran, those are fine languages to use. If you don’t know
either C or Fortran it is difficult to recommend learning them just so you can write complex
IFEFFIT scripts. Both languages are fairly intolerant of mistakes and have fewer features than
the modern scripting languages. Once mastered, however, Fortran and C give very fast and
efficient programs.

Whether or not you know C or Fortran, if you’re interested in writing complex IFEFFIT

scripts or programming in general, I recommend learning one of Perl, Python, or Tcl. These
scripting languages are remarkably similar in that they all work well on every major platform,
are free, and well-supported via the internet. They are all fairly easy to learn, and make it easy to
write and debug simple scripts. They also hide the really ugly parts of C from you, and provide

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 99

‘high-level’ data structures which lets you do some fairly sophisticated things that would be
more painful in C or Fortran. They all have their quirks, too, which can be both maddening and
charming. Learning any of them will greatly improve your computer skills, as well as making
complex IFEFFIT scripts possible.

Of the three, Tcl[?] is probably the oldest, simplest and least powerful language. That’s not
to say it’s bad – it’s power is certainly good enough for most things. It may even be the most
popular of the three languages. Its syntax is very simple, and yet a lot of amazing things have
been done in Tcl/Tk. These days Tcl is essentially synonymous with the truly wonderful and
portable Tk GUI toolkit, and is often just referred to as Tcl/Tk. It is hard to over-emphasize the
ability to write GUIs that work on Unix, Mac, and Win32 machines. Still, in my opinion Tcl/Tk
is the least interesting scripting language.

Perl[?, ?] is probably best known as a Unix system-administration and Web-scripting lan-
guage. In some sense, Perl is Unix distilled into a single language, for both good and bad. It
excels at string and text processing (parsing, pattern matching, and formatting of text output). If
you’re interested in learning web-scripting or Unix, learning Perl is a good choice. Perl attempts
to be a ‘natural language’ and so provides several syntax options and some truly breathtaking
constructs. All this can lead to programs that intermix punctuation-laden lines and near-English
text. The Tk GUI toolkit works with Perl on Windows and Unix, but not on Macintoshes.
Several IFEFFIT scripts have been written in Perl, and Bruce Ravel (who rewrote the ATOMS

program in Perl), has some advanced Perl modules for using IFEFFIT.
If you don’t already know Tcl or Perl, learning Python[?] may be your best bet. Though

probably the least popular of the three languages, Python is growing in popularity and is espe-
cially good for scientific programming (complex math is supported!). Python has a very nice
implementation of object-orientation and is generally hailed for its readability and “cleanli-
ness”. That’s not to say that Python is without its own quirks, but it is almost certainly the most
elegant and easiest to learn of the three scripting languages mentioned. As a bonus, the Tk GUI
toolkit works with Python on Mac, Windows, and Unix. As an additional incentive, G.I.FEFFIT

is written in python.

11.2 Controlling screen outputs: The echo buffer

An important consideration for either scripting or programming with IFEFFIT is how to handle
the text messages that are written to the screen during an interactive session. These messages
include unprompted warnings and error messages as well as information that you explicitly
asked to be shown, say through a show() command. The variable &screen echo, first
mentioned in section 3.8, can be used to control whether this output is actually written to the
screen (technically speaking, standard output, which may not even be visably available from
your program) or saved to an echo buffer that you can access from your program.

11.3 The Fortran interface to IFEFFIT

IFEFFIT is written primarily in Fortran, so using it from within Fortran programs is quite easy.
The basic use of IFEFFIT is to send command strings to an “IFEFFIT engine” which acts just
like an interactive IFEFFIT session run at the command prompt. The underlying engine has its
own set of Program Variables that are kept in its own memory space, separate from the calling
program. The session “stays alive” until the calling program ends.

Though you could directly call any of the subroutines or functions in the IFEFFIT library, it is
highly recommended that you not make such direct calls. Instead, you should use the functions

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 100

Table 9: Integer return values from ifeffit(), a function to execute IFEFFIT commands in
an “IFEFFIT engine”. The function is accessible from Fortran, C, C++, Perl, Python, and Tcl.

Return value Meaning

0 normal, successful execution
-2 in the middle of a macro definition
-1 in the middle of an incomplete command line
1 normal exit
> 1 abnormal exit

provided in the application programming interface (API), as described here and encapsulated in
the Fortran include file ifeffit.inc that can be found with the configuration files in the IF-
EFFIT distribution (typically in the /usr/local/share/ifeffit/config/ directory).

The IFEFFIT Fortran API defines eight external functions, all of which are integer functions.
To use these functions, you can simply put a fortran include statement at the top of your
program, so that instead of explicitly declaring the integer function ifeffit, you could say

program use_if
integer i
include ’/usr/local/share/ifeffit/config/ifeffit.inc’

c
i = ifeffit(’ ’)
i = ifeffit(’read_data(cu.xmu, group=cu, type=xmu)’)
i = ifeffit(’spline(cu.energy, cu.xmu, rbkg = 1.2)’)
i = ifeffit(’plot(cu.k, cu.chi)’)
end

This shows a very simple IFEFFIT session converted into a Fortran program, using only the
function ifeffit(). This function is the main interface to the underlying IFEFFIT engine.

As this example shows, it is recommended that you first call ifeffit() with an “initial-
ization string”, typically a blank line, but optionally setting system configuration variables.

How do you actually build an executable out of this program file? That, of course, depends
on details of your system. Most of the settings needed are put in the file Config.mak in the
same location as ifeffit.inc. This file contains Makefile instructions needed for linking
your IFEFFIT application with the IFEFFIT library and all the other libraries needed to make an
executable. An example Makefile (using the above code and the settings of Config.mak from a
fairly normal linux system) is included in the examples/scripting section of the source
distribution.

11.3.1 integer function ifeffit()

The ifeffit() function takes a string as an argument (up to 1024 characters), and returns an
integer, which will have one of the following values given in Table 9

You should be somewhat careful about the characters you actually send to ifeffit(),
especially with respect to non-printable characters and line-ending issues. Though it tries to
remove non-printing characters, it may not be wise to simply open a file and send its contents
to ifeffit() without checking that the file does not contain binary data.

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 101

11.3.2 integer function iffputsca()

The iffputsca() function takes two arguments: the first is a character string (up to 128
characters) that names an IFEFFIT scalar (following the naming rules outlined in chapter 3), and
the second is a double precision value. The effect is to set the named scalar with the given value.
If the scalar already exists, it will be overwritten. Note that this is equivalent to a set()()
command, not a def()() command: for that, you should use the ifeffit() function.

iffputsca() always returns 0.

i = iffputsca(’kmin’, 3.d0)
x = sqrt(100.)
i = iffputsca(’kmax’, x)
i = ifeffit(’ show kmin, kmax’)

would show the values to be 3.0 and 10.0, respectively.

11.3.3 integer function iffgetsca()

The iffgetsca() function takes two arguments: the first is a character string (up to 128
characters) that names an existing IFEFFIT scalar (following the naming rules outlined in chap-
ter 3), and the second is a double precision variable. The effect is to retrieve the value of the
named IFEFFIT scalar and put it into the provided Fortran variable. If the scalar does not exist
in the IFEFFIT session, the value will be set to 0.

iffgetsca() always returns 0.

i = ifeffit(’ set var = sqrt(100.0)’)
i = iffgetsca(’var’, x)
print*, ’ x = ’, x

would show the value 10.0.

11.3.4 integer function iffputarr()

The iffputarr() function takes three arguments: the first is a character string (up to 128
characters) that names an IFEFFIT array (following the naming rules outlined in chapter 3), the
second is an integer giving the length of the array, and the third is a double precision array. The
effect is to set the named IFEFFIT array with the provided array. If the array already exists, it
will be overwritten.

iffputarr() always returns 0.

double precision x(200),y(200)
do i = 1, 200

x(i) = i * 4.0
y(i) = sin(x(i) / 100.)

end do
i = iffputarr(’my.x’, 100, x)
i = iffputarr(’my.y’, 100, y)
i = ifeffit(’ show @arrays’)
i = ifeffit(’ plot my.x, my.y, color=red’)

would show the arrays my.x and my.y to have 100 elements.

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 102

11.3.5 integer function iffgetarr()

The iffgetarr() function takes two arguments: the first is a character string (up to 128
characters) that names an existing IFEFFIT array (following the naming rules outlined in chap-
ter 3), the second is a double precision array to store the output result. The effect is to retrieve
the value of the named IFEFFIT array and store it into the provided Fortran array.

iffgetarr() will return the length of the output array. It is an error for the array to not
contain enough elements to be filled.

double precision x(200)
i = ifeffit(’my.x = range(0,100,1)’)
n = iffgetarr(’my.x’, x)
print*, ’x has ’, n, ’ elements:’
print* , x(1), x(2), ’ ... ’, x(n)

would show the array x to have 100 elements: 1, 2, . . . , 100.

11.3.6 integer function iffputstr()

The iffputstr() function takes two arguments: the first is a character string (up to 128
characters) that names an IFEFFIT string (following the naming rules outlined in chapter 3, but
with the leading ’$’ optional), and the second is a character string for the value. The effect is
to set the named string with the given value (only the first 128 characters will be used – any
remaining characters will be ignored). If the string already exists, it will be overwritten.

iffputstr() always returns 0.

character*128 txt
txt = ’Here is a string’
i = iffputstr(’text1’, txt)
i = ifeffit(’ show @strings’)

would show the string $text1 to be ’Here is a string’.

11.3.7 integer function iffgetstr()

The iffgetstr() function takes two arguments: the first is a character string (up to 128
characters) that names an existing IFEFFIT string (following the naming rules outlined in chap-
ter 3, but with the leading ’$’ optional), and the second is a character string variable to hole the
value. The effect is to retrieve the named string with the given value. The string variable pro-
vided should be large enough to hold the result (128 characters is a safe value, as the returned
value will never be larger than that).

iffgetstr() will return the real, useful length of the string.

character*128 txt
i = ifeffit(’ set $text1 = "string test 1"’)
n = iffgetstr(’text1’, txt)
print*, ’ txt = ’, txt(1:n)

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 103

11.3.8 integer function iffgetecho()

The iffgetecho() function takes one argument: a character string variable to hold the
value returned. The effect is to retrieve the next element in the “echo buffer”. Any remaining
lines in the echo buffer will be shifted down (or popped, as it is often called), and the value
of &echo lines will be decreased by one. The echo buffer will only be filled if the variable
&screen echo is set to 0, which indicates that you intend to handle all text that would be sent
to the screen yourself. Since any command may write to the echo buffer, it is recommended that
you check the value of &echo lines and retrieve all “echo”ed lines after each command.

iffgetecho() will return the real, useful length of the echo string.

character*128 txt(32)
double precision xnbuff
integer nbuff, j
i = iffgetsca(’&echo_lines’, xnbuff)
nbuff = min(32,int(xnbuff))
do 10 j = 1, nbuff

il = iffgetecho(txt(j))
print*, ’ echo line ’, j , ’ = ’, txt(j)(1:il)

10 continue

11.4 The C interface to IFEFFIT

Accessing IFEFFIT from a C program is very easy. The basic concepts and many of the details of
the IFEFFIT application interface (or API for the programmers out there) given here also apply
to using IFEFFIT from within scripting languages, as described later in this chapter. C++, by the
way, is similar enough to C that calling IFEFFIT from it should be straightforward once the C
interface is described. If you’ve read the previous section, you’ll find that the C interface is also
very similar to the Fortran interface.

The basic use of the IFEFFIT C interface is to send command strings to an “IFEFFIT engine”
which acts just like an interactive IFEFFIT session run at the command prompt. The underlying
engine has its own set of Program Variables that are kept in its own memory space, separate
from the calling program. The session “stays alive” until the calling program ends. Though you
could directly call any of the subroutines or functions in the IFEFFIT library, it is highly recom-
mended that you not make such direct calls. Instead, you should use the functions provided in
the application programming interface (API), as described here and encapsulated in the C in-
clude file ifeffit.h that can be found with the configuration files in the IFEFFIT distribution
(typically in the /usr/local/share/ifeffit/config/ directory).

The IFEFFIT C API defines eight external functions, all of which are integer functions. To
use these functions, you can simply put an include directive at the top of your program:

#!include "ifeffit.h"
int main() {

int i;
i = ifeffit(" ");
i = ifeffit("read_data(cu.xmu, group=cu, type=xmu)");
i = ifeffit("spline(cu.energy, cu.xmu, rbkg = 1.2)");
i = ifeffit("plot(cu.k, cu.chi)");

}

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 104

This shows a very simple IFEFFIT session converted into a C program, using only the function
ifeffit(), the main interface to the underlying IFEFFIT engine.

As this example shows, it is recommended that you first call ifeffit() with an “initial-
ization string”, typically a blank line, but optionally setting system configuration variables.

How do you actually build an executable out of this program file? That, of course, depends
on details of your system. Most of the settings needed are put in the file Config.mak in
the same location as ifeffit.h. This file contains Makefile instructions needed for linking
your IFEFFIT application with the IFEFFIT library and all the other libraries needed to make an
executable. An example Makefile (using the above code and the settings of Config.mak from a
fairly normal linux system) is included in the examples/scripting section of the source
distribution.

11.4.1 function ifeffit()

The ifeffit() function takes 1 argument that is a character string up to 1024 characters
long (including any newline characters and the like) and returns an integer. The string up to the
first newline character is interpreted and run as a command by the IFEFFIT engine. After the
command has been fully processed, an integer is returned, indicating a return status according
to Table 9. For backwards compatibility, the function iff exec() has identical behavior to
ifeffit().

11.4.2 function iff put scalar()

The iff put scalar() function takes two arguments: the first is a pointer to a character
string (up to 128 characters) that names an IFEFFIT scalar (following the naming rules outlined
in chapter 3), and the second is a pointer to a double. The effect is to set the named scalar with
the given double precision value. If the scalar already exists in the IFEFFIT engine, it will be
overwritten. Note that this is equivalent to a set()() command, not a def()() command:
for that, you should use the ifeffit() function itself.

iff put scalar() always returns 0.

double x, *px;
int i;
x = 3.00;
i = iff_put_scalar("kmin", &x);
x = sqrt(100.0);
i = iff_put_scalar("kmax", &x);
i = ifeffit(" show kmin, kmax");

would show the values to be 3.0 and 10.0, respectively.

11.4.3 function iff get scalar() and iff scaval()

The iff get scalar() function takes two arguments: the first is a pointer to a character
string (up to 128 characters) that names an existing IFEFFIT scalar (following the naming rules
outlined in chapter 3), and the second is a pointer to a double. The effect is to retrieve the value
of the named IFEFFIT scalar and put it into the provided C pointer. If the scalar does not exist in
the IFEFFIT session, the value will be set to 0.

iff get scalar() always returns 0.

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 105

double *x;
x = calloc(1,sizeof(double));
i = ifeffit(’ set var = sqrt(100.0)’);
i = iff_get_scalar(’var’, x);
printf(" x = %g \n", *x);

would show x to have the value 10.0.
A more convenient version of this function is also available: The iff scaval() function

takes one arguments: the name of an existing IFEFFIT scalar, and returns a pointer to its double
value. The above code could thus be rewritten as

double *x;
i = ifeffit(’ set var = sqrt(100.0)’);
x = iff_scaval(’var’);
printf(" x = %g \n", *x);

would show x to have the value 10.0.

11.4.4 function put string()

The put string() function takes 2 arguments to set the value of a text string Program Vari-
able. The first argument is the name of the variable in the IFEFFIT name space, and the second
is the value for the variable. Both the name and the variable itself are text strings (up to 128
characters long). To comply with the IFEFFIT naming rules, the variable name needs to begin
with a $.

11.4.5 function get string()

The get string() function takes 1 arguments that is the name of a text string Program
Variable in the IFEFFIT name space, and returns its value, which will be a text string up to 128
characters long (make sure to allocate enough memory!). To comply with the IFEFFIT naming
rules, the variable name must begin with a $.

11.4.6 function put array()

The put array() function takes 3 arguments to set the value of an array Program Variable.
The first argument is the name of the variable in the IFEFFIT name space. The second is the
number of points (type int*) in the array, and the third is the array itself (type double*). To
comply with the IFEFFIT naming rules, the variable name needs to contain a dot ‘.’.

11.4.7 function get array()

The get array() function takes 2 arguments to retrieve an IFEFFIT array Program Variable
into an array (some languages call these lists) in the calling language. The first argument is
the name of the variable in the IFEFFIT name space, and the second is the array itself (type
double*). To comply with the IFEFFIT naming rules, the variable name needs to contain a dot
‘.’. The value returned by get array() will be the number of points in the array.

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 106

11.4.8 function get echo()

11.5 The IFEFFIT Perl Module

Perl is an Open-Source scripting language, available for free at http://www.perl.com/. It runs
on every significant operating system. For those with programming (especially C) or Unix
experience, Perl is an easy language to learn, and is especially good for processing text files
and controlling processes. For those without much programming experience, Perl is still fairly
easy to learn. Many excellent books[?, ?] are available, and the support available on the web
is excellent. Perl’s flexibility and text-processing capabilities makes it very useful for many
projects, including web-scripting.

To use IFEFFIT from within a perl program, you need the IFEFFIT Perl Module, which is a
pluggable extension to perl included in the IFEFFIT distribution. Using the IFEFFIT module is
fairly easy. Somewhere near the top of your perl script you put ‘use Ifeffit;’ to tell perl
that you want to use the IFEFFIT module. This provides perl with a function called ifeffit
that takes a text string as an argument, sends that to the IFEFFIT engine and returns after the
command has executed. Subsequent calls to ifeffit continue in the same IFEFFIT session,
so that variables (arrays, scalars, strings, etc.) in IFEFFIT’s memory can be accessed by later
IFEFFIT commands. A simple script might look like this:

#!/usr/bin/perl -w
use Ifeffit;
$plot_command = "plot(my.x,my.y,color=blue)";
ifeffit(" my.x = indarr(600) / 300 ");
ifeffit(" my.y = 4 * exp(-my.x/5.) * cos(4*my.x - 70)");
ifeffit($plot_command);

The ifeffit function returns an integer, which is normally 0 for ‘success’. If the command
appears to be an incomplete line (that is, the line is expected to be continued), ifeffit returns
-1. If an ‘exit’ has been sent to ifeffit, it returns 1, and if a serious error occurs within
IFEFFIT, a value greater than 1 is returned.

In addition to sending commands as text strings to the IFEFFIT function, you can also di-
rectly access the scalars, arrays, and text strings in IFEFFIT’s store. There are six additional func-
tions – one for each of “set” and “get” of the three data types: get scalar, get string,
get array, put scalar, put string, and put array. To use these functions, you’ll
need to tell perl you want to use these functions (in keeping with perl’s custom, the default
behavior is to not provide loads of function names without explicitly asking for them) with

use Ifeffit ;
use Ifeffit qw(get_scalar get_string get_array);
use Ifeffit qw(put_scalar put_string put_array);

With these declarations, you can now put something like

ifeffit(" read_data(my.xmu, type = xmu)");
ifeffit(" spline(my.energy, my.xmu, rbkg = 1.0)");
$e0 = get_scalar("e0");
$rbkg = get_scalar("rbkg");
$perl_string = "Spline Rbkg = $rbkg E0 = $e0\n";
put_string("title1", $perl_string)
ifeffit(" write_data(file=my_out.chi,$title1, my.k, my.chi)");

http://www.perl.com/

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 107

in your perl script. After reading µ(E) data and doing a background subtraction, this script got
the values of Rbkg and E0, wrote those values into a perl text string and then passed that string
directly back into IFEFFIT. Since IFEFFIT has essentially no string processing capabilities, this
is a good way to write a decent title line for an output file. Finally, this script told IFEFFIT to
write an output file for χ(k) using this newly-formed title line.

If the IFEFFIT perl module is installed on your system, more complete documentation is
available by typing “perldoc Ifeffit” at a command-line prompt.

11.6 Using IFEFFIT from Python

Like Perl and Tcl, Python is an Open-Source scripting language that runs on every significant
operating system and is available for free at http://www.python.org/. Python is easy to learn,
and is growing in popularity, especially for scientific programming. It’s supports the Tk toolkit
on Unix, Windows, and Mac, and even has some 2d-plotting capabilities builtin.

To use IFEFFIT from within Python, you’ll need to make the IFEFFIT extension to Python
(consult the installation documentation). Once that’s done, you can import the Ifeffit module to
get the same sort of functions described above for Perl and Tcl. That is, there is an ifeffit
function that takes a command string argument and returns an integer. There are also functions
get scalar, get string, get array, put scalar, put string, and put array
for copying each of the three data types back and forth between the underlying IFEFFIT session
and the Python script itself.

#!/usr/bin/python
import Ifeffit
iff = Ifeffit.Ifeffit()
iff.ifeffit("read_data(my.xmu, group=my, type = xmu)")
iff.ifeffit("spline(my.energy, xmu = my.xmu, rbkg = 1.0)")
e0 = iff.get_scalar("e0")
rbkg = iff.get_scalar("rbkg")
str = "Spline Rbkg = %f8.2 E0 = %f9.2" % (rbkg, e0)
iff.put_string("title1", str)
iff.ifeffit("write_data(file = my_out.chi, my.k, my.chi)")

11.7 Using IFEFFIT from Tcl

Tcl[?] is an Open-Source scripting language, available for free at http://www.scriptics.com/.
Like Perl, it runs on every significant operating system, and is especially popular when used
with it’s exceptional Tk widget set for building cross-platform GUIs. The Tcl syntax is fairly
simple, and many books and web-sites are devoted to it.

To get access to the IFEFFIT functionality from within Tcl, you’ll need to make the IFEFFIT

extension to Tcl for your system. Once that’s done (see the installations instructions for details),
you can “source” the Ifeffit.tcl file to get the same sort of functions described above for Perl.
That is, there is an ifeffit function that takes a command string argument and returns an
integer. There are also functions get scalar, get string, get array, put scalar,
put string, and put array for copying each of the three data types back and forth between
the underlying IFEFFIT session and the Tcl script itself.

A Tcl script using IFEFFIT might look like this:

source Ifeffit.tcl

http://www.python.org/
http://www.scriptics.com/

11 SCRIPTING AND PROGRAMMING WITH IFEFFIT 108

ifeffit "read_data(my.xmu, group=my, type = xmu)"
ifeffit "spline(my.energy, xmu = my.xmu, rbkg = 1.0) "
set e0 [get_scalar "e0"]
set rbkg [get_scalar "rbkg"]
set tcl_string "Spline Rbkg = $rbkg E0 = $e0"
put_string $title1 $tcl_string
ifeffit "write_data(file = my_out.chi, my.k, my.chi)"

A GLOSSARY OF PROGRAM VARIABLES 109

A Glossary of Program Variables

This appendix describes and lists the Program Variables IFEFFIT expects you to use. It is a
compilation of the Program Variables used as default input and output from the commands listed
in chapter 9. It also describes common conventions used for the naming of arrays generated by
the commands.

A.1 Scalar Naming Conventions

The tables below list the commonly used scalars and text strings Program Variables, giving a
very brief description of the expected meaning for the variables and the commands that use this
variable either as input or output. More details about the meaning and use of these variables can
be found in the entry for each command.

General and System Variables
Program Variable Description Used in Commands
$column label data column label read data()
$commentchar comment character read data(), write data()
&echo lines number of lines to echo() echo(), load()
$filename file name for input read data()
$group default group name many
$history file name command history file history()
$&install dir installation directory f1f2()
&pause ignore ignore pause() commands pause()
&screen echo screen echo setting echo(), log(), macro()
&sync level synchronization level save(), set(), show()
$1 . . .$9 macro arguments at macro execution

Plotting
Program Variable Description Used in Commands
cursor x cursor x coordinate cursor(), zoom()
cursor y cursor y coordinate cursor(), zoom()
$plot device plotting device plot()
$plot file filename for hardcopy plot plot()
$plot title title for plot plot()
$plot xlabel label for x-axis plot()
$plot ylabel label for y-axis plot()

FEFF Paths
Program Variable Description Used in Commands
$feff file name of FEFF file path()
path index path index path()
reff R of a FEFF path get path()

A GLOSSARY OF PROGRAM VARIABLES 110

Pre-Edge and Spline
Used in commands pre edge(), and spline()

Program Variable Description Used in Commands
e0 E0, where k = 0
edge step ∆µ(E0), edge step
norm c0 normaliztion parameter
norm c1 normaliztion parameter
norm c2 normaliztion parameter
norm1 normalization range
norm2 normalization range
norm order order of normalization polynomial
pre offset offset of pre-edge line
pre slope slope of pre-edge line
pre1 pre-edge range
pre2 pre-edge range
rbkg Rbkg for XAFS spline spline()
(see also Fourier transform parameters for spline())

Fourier Transform
Used in commands chi noise(), feffit(), fftf(), and fftr()

Program Variable Description Used in Commands
$altwindow alternate window array
dk1 dk1

dk2 dk2

dr1 dR1

dr2 dR2

kmax kmax

kmin kmin

kweight k-weight w
kwindow k → R window type
rmax Rmax

rmin Rmin

rwindow R→ q window type
dk1 spl dk1 spline()
dk2 spl dk2 spline()
kmax spl kmax spline()
kmin spl kmin spline()
kweight spl k-weight w spline()

A GLOSSARY OF PROGRAM VARIABLES 111

Fitting
Program Variable Description Used in Commands
chi square fit statistic feffit(), minimize()
chi reduced fit statistic feffit(), minimize()
epsilon k εk, uncertainty in χ(k) chi noise(), feffit()
epsilon r εR, uncertainty in χ̃(R) chi noise(), feffit()
&fit iteration number of fit interations feffit(), minimize()
$fit space fitting space feffit()
n idp Nidp feffit()
n varys number of variables feffit(), minimize()
r factor fit statistic feffit()

A.2 Array Naming Conventions

Arrays created by commands will have predictable names, and depend only on the current
group name, held in the string variable $group, or specified as a command argument. By
convention, the prefix of the array name is the group name, and the suffix of the array name
contains a meaningful identification for the data. The following table lists the commonly used
suffixes, their meaning, and commands that use or create arrays with these suffixes.

Array suffix Description Used in Commands
energy E none
xmu µ none
pre pre-edge subtracted µ pre edge(), spline()
norm normalized pre pre edge(), spline()
bkg background µ0 spline()
k k spline(), fftf(), feffit()
chi χ spline(), fftf(), feffit()
win Wk (k-window function) fftf(), feffit()
chir mag |χ(R)| fftf()
chir re Re[χ(R)] fftf()
chir im Im[χ(R)] fftf()
chir phase phase[χ(R)] fftf()

B FOURIER TRANSFORMS IN IFEFFIT 112

B Fourier Transforms in IFEFFIT

This appendix describes and lists the conventions used for Fourier transforms in IFEFFIT.

B.1 Fourier transform Conventions

Many of IFEFFIT’s command use Fourier transforms (FT) to perform their tasks. In addition to
fftf() and fftr(), which are principly designed to do Fourier transforms, the commands
chi noise(), feffit(), and spline() all do (or can do) Fourier transforms as part of
their data processing. The form of the Fourier transform done by all these commands is the
same, and is really an XAFS-specific Fourier transform that converts χ(k) into χ̃(R) in the
forward direction and χ̃(R) into χ̃(k) in the reverse direction. The XAFS-specific FT done
by these commands will be described in detail shortly. For now, an important point to empha-
size is that all these commands share many arguments and grogram variables describing the
Fourier transforms. These shared command arguments and program variables are the topic of
this section.

The forward XAFS Fourier transform, done with fftf(), transforms χ(k) to χ̃(R). To
do this, the χ(k) data is first multiplied by a k-weighting factor of the form kw and a window
function before the actual Fast Fourier transform is performed. The k-weighting factorw is used
to “even out” the decaying χ(k) function and to emphasize different k-regions of the EXAFS
in the resulting χ̃(R). Popular choics for w are 1, 2, and 3.

Formally, the XAFS Fourier transform can be written as

χ̃(R) =
1√
2π

∫ ∞
−∞

dkei2kRkwχ̃(k)Ω(k) (4)

where Ω(k) is the window function, and w is the k-weighting factor. The window function can
take a variety of functional forms, all of which rise from a small value (possible zero) at low-k,
rise up to one, and then fall back towards zero at high-k. The window is intended to smooth
out any ringing in the resulting FT amplitude while maintaining as much resolution as possible,
and will be discussed in more detail in the next section.

A discrete form of the above formula is actually used so that the Fast Fourier Transform
algorithm can be exploited. The key point here is that the data is sampled on a finite and
uniform grid in k (or R for the back-transform). The k-space grid used throughout IFEFFIT is
δk = 0.05 Å

−1. The array sizes for χ(k) and χ̃(R) areNfft = 2048, and the data is zero-padded
out to high-k (or high-R). The zero-padding for χ(k) will smooth the data points in R-space,
and the zero-padding of χ̃(R) will smooth the data in backtransformed-k-space. The grid in
R-space is δR = π/Nfft δk, which is then ∼ 0.0307 Å.

For the discrete Fourier transforms, we write kn = nδk and Rm = mδR, and have

χ̃(Rm) =
iδk√
πNfft

Nfft∑
n=1

χ(kn) Ω(kn) kwn e
2πinm/Nfft (5)

for the forward transform and

χ̃(kn) =
2iδR√
πNfft

Nfft∑
m=1

χ̃(Rm) Ω(Rm) e−2πinm/Nfft (6)

for the back transform. These normalizations preserve the symmetry properties of the Fourier
Transforms with conjugate variables k and 2R.

B FOURIER TRANSFORMS IN IFEFFIT 113

There are few slight complication with these formulas. The first arises from the fact that
because the classic EXAFS equation has a term of the form ei2kR or sin(2kR), it customary to
use k and 2R as the Fourier conjugate variables while still desiring the R space function to be a
function of R. This changes the normalization factors in front of the integral to those above.

The other minor complication is that the “measured” χ(k) derived from µ(E) and is a
strictly real function while the Fourier transform inherently treats χ(k) as complex functions,
signified by the˜above the χ). There is an ambiguity about how to construct the complex χ̃(k).
In many formal treatments, the measured XAFS is written as the imaginary part of some func-
tion, so that constructing χ̃(k) as (0, χmeasured(k)) might seem a natural choice. For historical
reasons, IFEFFIT uses the opposite convention, constructing χ̃(k) as (χmeasured(k), 0). You can
easily override this default however and do transforms assuming χ(k) is the imaginary part of
χ̃(k). Normally, one does a forward transform with

Iff> fftf(real = data.chi)

which sets χ̃(k) as (χdata(k), 0). You can use

Iff> fftf(imag = data.chi)

to construct χ̃(k) as (0, χdata(k)).
The Fourier transform requires that the χ(k) data begin at k = 0. More to the point, the

fftf() command assumes that the supplied array for chi starts at k = 0 unless told otherwise.
It is important to include the k-array with this keyword. If not given, the χ array will be assumed
to have it’s first point be χ(k = 0), and then to be input on an even k-grid with spacing 0.05 Å.

B.2 Fourier transform window functions

There are seven optional forms for the Fourier transform window Ω(k). There is quite a bit
of literature on the different windows, and generally more opinion than justified reason for
selecting one window function over others. I believe that all the window functions in IFEFFIT

are appropriate and useful for EXAFS analysis. My recommendation is to pick one function and
stick with it. If you’re unsure about which one to pick, my favorites are the Hanning window
(the default in IFEFFIT, largely for historical reasons) and the Kaiser-Bessel window. Again, I
have not seen any objective rational for preferring any other windows, and the choice is really a
matter of taste.

The available window functions are described below, first in the table giving a brief descrip-
tion, then with an equation for the window function, and finally with a representative plot. For
simplicity, all are written as functions of k. The R-space windows are exactly analogous with
k replaced by r.

altwindow names an alternative window array is named with this keyword, overriding
the ‘normal’ window. The array specified must be created before invoking feffit.

B FOURIER TRANSFORMS IN IFEFFIT 114

Table 10: Table of Fourier Transform Window Functions. The first four windows list ramp up
from 0 to 1 over a k-range defined by the dk parameter, stay at 1 for some k-range, and then
drop back down to zero. The final three window functions apply a continuous function that
may never go to zero over the entire k-range of the window. For each window type, the Key
in the second column gives the value to use for the kwindow parameter of fftf(), or the
rwindow parameter of fftr().

Window Name Key Description

Hanning hanning ramps up and down as cos2(k)
Parzen parzen ramps up and down linear with k
Welch welch ramps up and down linear with k2

Sine sine a Sine function over the full k-range
Gaussian gaussian a Gaussian function over the full k-range
Kaiser-Bessel kaiser a modified Bessel function over the full k-range

Figure 5: Anatomy of the Hanning Window.

B FOURIER TRANSFORMS IN IFEFFIT 115

Figure 6: Anatomy of the Parzen Window.

Figure 7: Anatomy of the Welch Window.

B FOURIER TRANSFORMS IN IFEFFIT 116

Figure 8: Anatomy of the Gauss Window.

Figure 9: Anatomy of the Kaiser Window.

B FOURIER TRANSFORMS IN IFEFFIT 117

Figure 10: Anatomy of the Sine Window.

	Introduction
	The Basics of ifeffit
	Starting the program
	A Sample Run
	The show and print Commands

	Structure and Syntax of ifeffit
	Commands
	Scalars, Arrays, and Strings
	Dynamic Variables: Set, Def, and Sync
	Fitting Variables: Guess
	Mathematical Syntax and Operations
	Common Math Operations
	Common Math Functions
	Array-Specific Operations
	Functions for Smoothing and Interpolating Data
	XAFS-specific Functions for 2

	Commands, Arguments, and Keyword/Values
	Getting information back from ifeffit
	Log Files, echo, show, and print

	Input and Output Files
	Reading ASCII Column Files
	Sorting Data with read_data()
	Writing ASCII Column Files
	ifeffit PAD Format for Save and Restore Files

	Plotting with ifeffit
	Specifying Data for Plotting
	Error Bars
	Colors, Line Styles, and Other Attributes
	Text Strings and Labels
	Markers and Arrows
	Cursor and Zooming
	Graphics Devices
	X-Windows Graphics
	GrWin Graphics for Win32 systems
	Aquaterm Graphics for Mac OS X
	PostScript, GIF and PNG Graphics Files

	Basic XAFS Data Processing
	Data Manipulation and Corrections
	De-glitching
	Pre-Edge Subtraction, Finding E0, and Normalization
	Simple XANES spectral analysis
	Post-Edge Background Subtraction: isolating (k)
	XAFS Fourier Transforms
	Forward Fourier Transforms with fftf()
	BackTransforms with fftr()
	Phase-Corrected XAFS Fourier Transforms

	Fitting XAFS Data with feff Calculations
	Defining and Using Paths
	Creating (k) data with ff2chi
	Building a Fitting Model
	Executing a Fit
	Estimating the uncertainties in fitted variables
	Goodness of Fit Parameters
	Post-Fitting Tasks
	Additional Fitting Features of feffit
	Including Background Refinement
	Constraints and Restraints in Fitting
	Multiple-k-Weighting
	Simultaneous Fitting of Multiple Data Sets

	Fitting Non-XAFS Data with ifeffit
	Commands
	bkg_cl
	chi_noise
	color
	comment
	correl
	cursor
	def
	echo
	erase
	exit
	f1f2
	feffit
	ff2chi
	fftf
	fftr
	get_path
	guess
	history
	linestyle
	load
	log
	macro
	minimize
	newplot
	path
	pause
	plot
	plot_arrow
	plot_marker
	plot_text
	pre_edge
	print
	quit
	read_data
	rename
	reset
	restore
	save
	set
	show
	spline
	sync
	unguess
	window
	write_data
	zoom

	Macros in ifeffit
	Scripting and Programming with ifeffit
	Which language to use?
	Controlling screen outputs: The echo buffer
	The Fortran interface to ifeffit
	integer function ifeffit()
	integer function iffputsca()
	integer function iffgetsca()
	integer function iffputarr()
	integer function iffgetarr()
	integer function iffputstr()
	integer function iffgetstr()
	integer function iffgetecho()

	The C interface to ifeffit
	function ifeffit()
	function iff_put_scalar()
	function iff_get_scalar() and iff_scaval()
	function put_string()
	function get_string()
	function put_array()
	function get_array()
	function get_echo()

	The ifeffit Perl Module
	Using ifeffit from Python
	Using ifeffit from Tcl

	Glossary of Program Variables
	Scalar Naming Conventions
	Array Naming Conventions

	Fourier Transforms in ifeffit
	Fourier transform Conventions
	Fourier transform window functions

